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Chapter 1

Introduction

1.1 Quantum entanglement

In 1935 Einstein, Podolsky and Rosen [1] (EPR) presented a paradox that still baffles and

surprises us today. They proposed the following two “reasonable” criteria as the basis

of any acceptable theory: (i)Reality: ‘If, without in any way disturbing a system, we can

predict with certainty the value of a physical quantity, then there exists an element of reality

corresponding to the physical quantity’, and (ii)Locality: The theory should be local, i.e.,

there is no action at a distance in nature. EPR were able to give an example of a quantum

mechanical system which did not satisfy these above two conditions and concluded that

the quantum description of nature was incomplete. But, as Bell [2] put it, “The reasonable

thing just does not work”. The assumption is inconsistent with quantum mechanics and

with experiment. The mathematical framework for demonstrating the violation of local

realism in quantum mechanics was first provided by Bell through his famous inequality

[2].

The esssence of nonlocality follows from the property of inseparability of composite

quantum systems. Consider two particles that once interacted but are remote from one

another now and do not interact. Although they do not interact, they are still entangled

if their joint state cannot be written as a product of the states of individual subsystems.

Schrödinger [3] first coined the term ‘entanglement’ for the non-local correlation repre-

sented by the inseparable state. Such states are now called entangled states. Quantum

entanglement is one of the essential ingredients in the current development of quantum

information processing. Now entanglement is treated as a resource in quantum communi-

1



Chapter 1. Introduction 2

cation and computation protocols [4, 5]. After Bell’s work quantum entanglement became

a subject of intensive study among those interested in the foundations of quantum theory.

But more recently, entanglement has come to be viewed not just as a tool for exposing the

weirdness of quantum mechanics, but as a potentially valuable resource. By exploiting

entangled quantum states, we can perform tasks that are otherwise difficult or impossible

i.e., typical resources required for cryptography, quantum teleportation and dense-coding

[4] are entangled states. For example, in entanglement-assisted teleportation entangled

pairs are used (one maximally entangled qubit pair is needed for every qubit teleported).

The arena of atom-photon interactions is a vast and potentially useful physical do-

main for implementing quantum information protocols. Entanglement has been widely

observed in quantum optical systems such as cavity quantum electrodynamics. A number

of experiments have been carried out. Several studies have been performed to quantify

the entanglement that is obtained in atom-photon interactions in a cavity [6]-[13], which,

from the view point of information processing, is considered an important aspect. Practi-

cal realization of various features of quantum entanglement are obtained in atom-photon

interactions in optical and microwave cavities, using which controlled experiments can be

performed with the present state-of-the-art technology. In this thesis we perform the study

of several facets of quantum entanglement generated in atom-photon interactions with the

viewpoint of obtaining interesting and useful applications in real physical processes and

devices.

1.2 Criteria for entanglement

If two systems interact in the past, it is in general not possible to assign a single state

vector to either of the two subsystems. This is what is sometimes called the principle of

non-separability, or non-locality, and is one of the most evident manifestations of quantum

entanglement. We can choose a very simple example of two spin-1/2 particles emitted in

opposite directions from a common source. Let A and B be two spin-1/2 particles which

are emitted from a common source S. To describe any one of the particles we require a

two-dimensional Hilbert space. Let the basis for the two-dimensional Hilbert space for

particle A be |0〉1 and |1〉1 which are the eigenstates of σ1z (Pauli spin operator), where |0〉
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 Source

BA

Figure 1.1: Two particles A and B are emitted from a common source S.

represents the spin-down state and |1〉 represents the spin-up state. Similarly, the basis

of the two-dimensional Hilbert space for particle B will be |0〉2 and |1〉2 for operator σ2z .

Now if we are to describe the composite system, we have to consider a Hilbert space of

2⊗2 dimension, i.e. , a four-dimensional Hilbert space. Here the basis of H1 ⊗H2 will be

|00〉 = |0〉1 ⊗ |0〉2,
|01〉 = |0〉1 ⊗ |1〉2,
|10〉 = |1〉1 ⊗ |0〉2,
|11〉 = |1〉1 ⊗ |1〉2.

These are the eigenstates of the operator σ1z ⊗ σ2z . Now, the general states in the

composite Hilbert space can be written as

|φ〉=α|00〉12 + β|11〉12 + γ|01〉12 + δ|10〉12,

where α, β, γ, δ are complex quantities with the normalization condition |α|2 + |β|2 +

|γ|2 + |δ|2 = 1.

Now choosing particular values of α, β, γ, δ one can write

|φ+〉12 =
1√
2

(|00〉 + |11〉) ,

|φ−〉12 =
1√
2

(|00〉 − |11〉) ,

|ψ+〉12 =
1√
2

(|01〉 + |10〉) ,

|ψ−〉12 =
1√
2

(|01〉 − |10〉) .

These states are pure entangled states because these states can not be written as |Ψ〉 =

|χ〉1⊗|ξ〉2, i.e. , in the separable form. The states |φ+〉, |φ−〉, |ψ+〉, |ψ−〉 are also maximally
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entangled states or Bell states because they violate maximally the Bell’s inequality [2]

which will be discussed latter. An N -particle entangled state can be written as

|Ψ〉 =
∑

i>1

φi(1)ψi(2)χi(3)............ξi(N), N > 1. (1.1)

For the case of mixed states if the density operator of a bipartite system ρ is not

represented by ρab 6=
∑

i ρa(i)⊗ ρb(i), the system is said to be entangled, where ρa and ρb

are density operators for the subsystems a and b respectively. For the above pure states,

ρ2 = ρ. However, for mixed states Trρ2 < Trρ. The example of a pure separable and a

pure entangled state are, respectively

|Ψ〉 = |00〉, (1.2)

and

|Φ〉 =
1√
2
[|00〉 ± |11〉]. (1.3)

Now the conditions for mixed separable and entangled states are respectively,

ρ =
∑

i

pi|ai〉〈ai| ⊗ |bi〉〈bi|, (1.4)

and

ρ 6=
∑

i

pi|ai〉〈ai| ⊗ |bi〉〈bi|, (1.5)

where 0 ≤ pi ≤ 1,
∑

i pi = 1. The example of a mixed separable state is

ρ =
1

2
(|00〉〈00|+ |11〉〈11|), (1.6)

The Werner state is an example of a mixed entangled state [2]:

ρW = (1 − p)
1

4
I + p|Φ+〉〈Φ+|, (1.7)

with 1
3
< p ≤ 1 and |Φ+〉 = 1√

2
[|00〉 + |11〉]
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We now know that when the state of a composite system can not be written as a

direct product of their individual states, i.e., a state like |Ψ〉 6= |χ〉 ⊗ |φ〉, then the state

|Ψ〉 is said to be entangled. But it is not always easy to identify an entangled state in

this way. There are systematic procedures to detect entanglement. Let us now describe a

few criteria employed in the detection of entanglement as follows (i) Schmidt number (ii)

Partial transposition [14, 15] and (iii) Bell’s inequality [2].

1.2.1 Schmidt number

With any bipartite pure state as |φ〉AB = α|0〉A ⊗ |1〉B + β|1〉A ⊗ |0〉B, we may associate

a positive integer, the Schmidt number, which is the number of nonzero eigenvalues of

ρA or ρB, where ρA = TrB(|φ〉AB AB〈φ|)1. In terms of this quantity, we can define what

it means for a bipartite pure state to be entangled. The state |φ〉AB is entangled if its

Schmidt number is greater than one, otherwise it is separable. Now

ρA = TrB(|φ〉AB AB〈φ|),
=

∑

k=0,1

〈k|ρAB|k〉,

= |α|2|0〉〈0|+ |β|2|1〉〈1|. (1.8)

Therefore the density matrix

ρA =

(

|α|2 0

0 |β|2
)

(1.9)

has eigenvalues given by

λ1 = |α|2,
λ2 = |β|2.

If α and β are both non zero, the state |φ〉AB will be entangled because it has two positive

eigenvalues.

1Here ρA is called reduced density state of ρAB i.e. |φ〉AB AB〈φ| after taking trace over the system B.
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1.2.2 Partial transposition

For a 2⊗2 and 2⊗3 dimensional Hilbert space, Peres [14] and Horodecki et al. [15] found

a criteria of entanglement for a bipartite system. When the partial transposition of its

density matrix has a negative eigenvalue, the bipartite system is entangled. It is a simple

but effective criteria. To define partial transposition, we use the density matrix elements

of a state in some product basis ρmµ,nν = 〈m| ⊗ 〈µ|ρ|n〉 ⊗ |ν〉, the kets with Latin and

Greek letters form an orthogonal basis in the Hilbert space describing the first and second

system respectively. Now, the partial transpose of ρ is defined as ρTB
mµ,nν = ρmν,nµ.

Let us consider a state

|ψ〉AB = α|0〉A ⊗ |1〉B + β|1〉A ⊗ |0〉B, (1.10)

where α and β are not zero. The corresponding density state can be written as

ρAB = |ψ〉AB AB〈ψ|
= (α|0〉A ⊗ |1〉B + β|1〉A ⊗ |0〉B)

(α∗
A〈0| ⊗ B〈1| + β∗

A〈1| ⊗ B〈0|)
= |α|2|0〉A A〈0| ⊗ |1〉B B〈1| + αβ∗|0〉A A〈1| ⊗ |1〉B B〈0|

+βα∗|1〉A A〈0| ⊗ |0〉B B〈1| + |β|2|1〉A A〈1| ⊗ |0〉B B〈0|. (1.11)

In density matrix form, it is

ρAB =













|α|2 0 0 αβ∗

0 0 0 0

0 0 0 0

α∗β 0 0 |β|2













. (1.12)

Now, partial transposition on B gives

ρTB
AB = |α|2|0〉A A〈0| ⊗ |1〉B B〈1| + αβ∗|0〉A A〈1| ⊗ |0〉B B〈1|

+βα∗|1〉A A〈0| ⊗ |1〉B B〈0| + |β|2|1〉A A〈1| ⊗ |0〉B B〈0|. (1.13)

Therefore its density matrix is given by

ρTB
AB =













|α|2 0 0 0

0 0 αβ∗ 0

0 α∗β 0 0

0 0 0 |β|2













. (1.14)
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Alice
Q=+1 or −1

R =+1 or −1

Charlie

          Bob
S=+1 or −1 

T=+1 or −1
 particle  partile ‘1’ ‘2’

Figure 1.2: Schematic experiment for Bell’s inequality. Alice can choose to measure either

Q or R, and Bob can choose to measure either S or T . They perform their measurement

simultaneously. Alice and Bob are assumed to be far apart that performing a measurement

on one system can not have any effect on the result of the measurements on the other.

It has eigen-values

λ1 = |α|2,
λ2 = |β|2,
λ3 = |αβ|,
λ4 = −|αβ|.

Since it has a negative eigenvalue, we can say |ψ〉AB = α|0〉A ⊗ |1〉B + β|1〉A ⊗ |0〉B is

an entangled state. This is useful for both pure and mixed states in 2 ⊗ 2 and 2 ⊗ 3

dimensions only. This is also known as the negative patial transposition test. This test

fails in higher dimensions.

1.2.3 Bell’s inequality

Violations of Bell’s inequalities [2] can also be seen to prove the existence of correlations

between quantum systems. The mathematical framework for demonstrating the violation

of local realism in quantum mechanics was first provided by Bell through his famous

inequality [2]. To obtain Bell’s inequality we consider a thought experiment [4], illustrated

in Figure1.2. Here Charlie prepares two particles and he sends one particle to Alice, and

the second particle to Bob. Once Alice receives her particle, she performs a measurement

on it. She has available to her two different measurement apparatuses, so she could choose

to do one of two different measurements. These measurements are of physical properties

which are labeled by Q and R respectively and S, T are two physical properties Bob is
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capable of measuring. Assume that Q, R, S, T are dichotomic and take the value ±1. The

timing of the experiment is arranged in such a way that Alice and Bob do their experiment

at same time. Therefore, the measurement which Alice performs cannot disturb the result

of Bob’s measurement (or vice versa) since any physical influence cannot propagate faster

than light. Consider the Bell operator defined as

(QS +RS +RT −QT ) = (Q+R)S + (R−Q)T. (1.15)

Because R = Q = ±1, it follows that (Q+R)S = 0 or (R−Q)T = 0. In either case, it is

easy to see from equation(1) that (QS +RS +RT −QT ) = ±2.

Suppose next, that p(q, r, s, t) is the probability that, before the measurements are

performed, the system is in the state where Q = q, R = r, S = s, and T = t. Letting

E(.) denote the mean value of a quantity, we have

E(QS +RS +RT −QT ) =
∑

qrst

p(qrst)(qs+ rs+ +rt− qt)

≤
∑

qrst

p(qrst) × 2

≤ 2. (1.16)

We can also write

E(QS +RS +RT −QT ) =
∑

qrst

p(qrst)qs+
∑

qrst

p(qrst)rs

+
∑

qrst

p(qrst)rt−
∑

qrst

p(qrst)qt

= E(QS) + E(RS) + E(RT ) − E(QT ). (1.17)

Comparing Eq. (1.16) and Eq. (1.17) we obtain the Bell inequality as

E(QS) + E(RS) + E(RT ) −E(QT ) ≤ 2. (1.18)

This result is also often known as the Clauser, Horn, Shimony, and Holt (CHSH) inequality

[16] after the authors who first derived this form of Bell’s inequality. Here two assumptions

are made, in deriving Eq.(1.16), i.e., (i) the physical properties Q, R, S, T have definite

values which exist independent of observation, and (ii) the measurement of Alice does not

influence the result of Bob’s measurement.
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To describe the quantum violation of Bell’s inequality, let Charlie prepare a quantum

system of two qubits (quantum bits)2.

|ψ〉 =
1√
2

(|01〉 − |10〉)

which is the spin singlet state. We take the Bell-CHSH operator B as

B = â · σ ⊗ (b̂+ b̂′) · σ + â′ · σ ⊗ (b̂− b̂′) · σ.

Here â, â′, b̂, b̂′ are arbitrary unit vectors. â·σ =
∑3
i=1 aiσi, where σi are the Pauli matrices.

We can show that Tr[(σ · â ⊗ σ · b̂)|ψ〉〈ψ|] = −â · b̂ = − cos θab. Therefore one obtains

〈ψ|B|ψ〉 = Tr[B|ψ〉〈ψ|]. Thus,

〈ψ|B|ψ〉 = −â · b̂− â · b̂′ − â′ · b̂+ â′ · b̂′ = − cos θab − cos θab′ − cos θa′b + cos θa′b′ .(1.19)

The angles can be chosen in such a way that one gets 〈ψ|B|ψ〉 = 2
√

2 ≃ 2.8, i.e., 〈B〉 > 2.

This is the maximal violation Bell’s inequality. Therefore, at least one of the above

assumptions (i) and (ii) is violated by quantum mechanics. More recently, Gisin [17]

proved that all entangled pure states of bipartite systems violate the CHSH inequality.

But all mixed entangled states do not violate Bell’s inequality as shown by Werner in

1989 [18]. The CHSH inequality was convincingly tested for the first time by Aspect and

collaborators in 1982 [19]. There is an experimental proposal to test Bell’s inequality in

atom-photon interactions using the micromaser in the presence of both atomic decay and

cavity dissipation [20].

1.3 Quantification of entanglement

One of the main goals of the theory of entanglement is to develop measures of entan-

glement. There are some general properties which a reasonable entanglement measure

should have [21]. To quantify entanglement means nothing else but to associate a positive

real number to each state of a (finite dimensional) bipartite system. For bipartite systems

2The indivisible unit of classical information is the bit, which takes one of the two possible values

{0,1}. The corresponding unit of quantum information is called the “quantum bit” or qubit. It describes

the state in the simplest possible quantum system. A qubit state in a two-dimensional Hilbert space that

can take any value of the form a|0〉 + b|1〉, where a, b are complex numbers that satisfy |a|2 + |b|2 = 1.
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in pure states the quantification problem has been essentially solved. But in multipartite

systems additional complications arise, and even the pure state case is not well-understood

yet. For bi-partite systems in mixed states the quantification problem has been developed

in Hilbert space dimension 2⊗2. But difficulties arise in the quantification of mixed state

entanglement of bipartite systems in higher dimension. Several measures of entanglement

have been proposed and studied. We shall review entanglement measures for bipartite

systems A and B with Hilbert space dimension 2⊗2 in case of pure and mixed states. An

exhaustive definition of bipartite entanglement exists and is based upon the von Neumann

entropy [4] and the entanglement of formation or concurrence [22, 23].

1.3.1 von Neumann entropy

Quantifying bipartite entanglement in pure states is straightforward. If a pure bipartite

state is not entangled, when we take partial trace over one subsystem, the state of the

remaining sub-system will be pure. However if the state is entangled, the reduced state

is necesarily mixed. It thus makes sense to associate the degree of entanglement of the

whole bipartite state with how mixed the reduced state is. The measure of mixedness

we choose the von Neumann entropy of the reduced state. Let us now consider a pure

bipartite state ρAB = |ψ〉AB AB〈ψ| shared by two systems A and B. If it is entangled, its

partial trace ρA = TrBρAB or ρB = TrAρAB is mixed and for a maximally entangled state

it is maximally mixed. This suggests the use of the von Neumann entropy of ρAB, which

measures how much a state is mixed, as an entanglement measure for pure states, i.e., we

define von Neumann entropy of the reduced density matrix as EV (ρAB) = −Tr(ρA log2 ρA),

or EV (ρAB) = −Tr(ρB log2 ρB). If we consider a state

|ψ〉AB = α|01〉AB + β|10〉AB, (1.20)

the reduced state is

ρA = TrBρAB

=
∑

i=0,1

〈i|ρAB|i〉

= |α|2|0〉〈0|+ |β|2|1〉〈1|. (1.21)
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Therefore, the von Neumann entropy is

EV = −Tr(ρA log2 ρA)

= −Tr
[

(|α|2|0〉〈0| + |β|2|1〉〈1|) log2(|α|2|0〉〈0|+ |β|2|1〉〈1|)
]

= −Tr
[

(|α|2|0〉〈0| + |β|2|1〉〈1|)(log2 |α|2|0〉〈0|+ log2 |β|2|1〉〈1|)
]

= −Tr
[

(|α|2 log2 |α|2)|0〉〈0| + (|β|2 log2 |β|2)|1〉〈1|)
]

= −|α|2 log2 |α|2 − |β|2 log2 |β|2. (1.22)

When α = β = 1/
√

2, EV = 1.

1.3.2 Concurrence and Entanglement of formation

The above method cannot be used to measure the entanglement in case of mixed states.

The difficulties associated with it has been circumvented to some extent by Wootters

[22, 23]. However, his prescription is applied to bipartite systems only. He derived a

closed-form expression for the entanglement of formation of a pair of qubits in an arbitrary

state by introducing a related quantity known as the concurrence. For a pure state of two

qubits, the concurrence C(ψ) is given by

C(ψ) ≡ |〈ψ|ψ̃〉| (1.23)

where |ψ̃〉 ≡ σy ⊗ σy|ψ∗〉 represents the ‘spin-flip’ of |ψ〉, σy is the usual Pauli operator,

and the ‘∗′ denotes complex conjugation in the standard basis. Thus, the concurrence of

any product state of the form |ψ〉AB = |01〉AB, is equal to zero, as expected. Conversely,

performing the spin-flip operation on a maximally entangled state such as the singlet

state in the form |ψ〉AB = 1
2
(|01〉AB + |10〉AB) leaves the state invariant (up to an overall

phase), demonstrating that the concurrence achieves its maximum value for the maximally

entangled states. More generally, the following relationship holds between the concurrence

and the von Neumann entropy [24]

EV (ψ) = ǫ(C(ψ)) (1.24)

where the function ǫ is defined by

ǫ(C) ≡ h

(

1 +
√

1 − C2

2

)

(1.25)
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and

h(x) = −x log2 x− (1 − x) log2(1 − x) (1.26)

is the binary entropy function. That the concurrence satisfies the requirements for being

an entanglement monotone [25] follows immediately from the observation that ǫ(C) is a

monotonically increasing function of C and vice-versa.

For the generalization of the concurrence to a mixed state of two qubits we consider

a density matrix ρ of a pair of quantum systems A and B, and consider all possible pure-

state decompositions of ρ, i.e., all ensembles of states |ψk〉 with probabilities pk, such

that

ρ =
∑

k

pk|ψk〉〈ψk|. (1.27)

The concurrence for a mixed bipartite state is

C = min{pk,ψk}
∑

pkC(ψk) = min{pk,ψk}|
∑

k

〈ψk|ψ̃k〉|. (1.28)

The analytic solution to this minimization procedure involves finding the eigenvalues of

the non-Hermitian operator ρρ̃, where the tilde again denotes the spin-flip of the quan-

tum state, i.e., ρ̃ ≡ (σy ⊗ σy)ρ
∗(σy ⊗ σy). Specifically, the closed form solution for the

concurrence of a mixed state of two qubits is given by

C(ρ) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (1.29)

where the λi are the eigenvalues of ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy) in descending order. The

entanglement of formation EF of an arbitrary state ρ is related to C(ρ) [23] by a function

EF (ρ) as

EF (ρ) = h





1 +
√

1 − C2(ρ)

2



 , (1.30)

where

h(x) = −x log2 x− (1 − x) log2(1 − x) (1.31)
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is the binary entropy function. In case of pure states, the von Neumann entropy EV and

the entanglement of formation EF are the same, i.e., EF becomes ǫ(C) (see Eq.(1.24)).

Now we consider an example to quantify the entanglement using these above mentioned

entanglement measures. Consider the state |ψ〉AB = α|01〉AB+β|10〉AB. The concurrence

takes the form

C(ρ) = 2|αβ|. (1.32)

If we calculate von Neumann entropy, the concurrence and entanglement of formation for

the state |ψ〉 = 1√
2
(|01〉 − |10〉), we get the same result which is 1, because the state is a

pure and maximally entangled state. Let us consider a mixed entangled state

ρAB = p1|Φ−〉AB AB〈Φ−| + p2|01〉AB AB〈01|

where |Φ−〉AB = 1√
2
[|00〉AB + |11〉AB] and p1 + p2 = 1. The density matrix of ρAB is given

by

ρAB =













p2 0 0 0

0 p1/2 p1/2 0

0 p1/2 p1/2 0

0 0 0 0













, (1.33)

in the basis |01〉, |00〉, |11〉, |10〉 states. The eigen values of the matrix ρAB(σy ⊗
σy)ρ

∗
AB(σy ⊗ σy) are given by λ1 = p2

1, λ2 = 0, λ3 = 0, λ4 = 0. Therefore, the con-

currence C(ρAB) = p1 and the entanglement of formation EF (ρAB) can be obtained from

Eq.(1.30). If we choose p1 = 1/2 the above mixed entangled state is given by

ρAB = 1/2[|Φ−〉AB AB〈Φ−| + |01〉AB AB〈01|].

We get C(ρAB) = 1/2 and EF (ρAB) ≈ 0.35.

1.4 Decoherence and its effect on Entanglement

We have defined above measures of entanglement which we will be using in this thesis

for several examples of entanglement generated in atom-photon interactions. In the real

physical processes that we will study, decoherence plays an important role. When a system
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is coupled to a reservoir3 which may be thought of as a collection of a large number of

quantum systems (many degrees of freedom) in thermal eqilibrium, it loses energy to

the reservoir. This mechanism is called damping or decoherence mechanism. In order to

recover the state of the system at any time after its interaction with the reservoir, one

has to trace out the reservoir variables since it is practically impossible to monitor the

behaviour of the large number of degrees of freedom of the reservoir. This process reduces

pure states to mixed states, and in general decreases the entanglement of the states of

the decohering system.

Decoherence is brought about by both atomic decay as well as cavity photon loss, while

the atoms and cavity photons interact with their respective reservoirs. In this thesis work,

we do not consider atomic decay because the lifetime of the two-level Rydberg atom that

we study in this thesis (see chapter 2) is much longer than the atom-field interaction time

inside the cavity. We only consider the cavity photon loss. We study its quantitative

action in diminishing the atom-field and the resultant atom-atom secondary correlations

discussed in chapter 2. The effects of decoherence on nonlocality can be observed in a

controlled manner in actual experiments involving the micromaser discussed in chapter

3. In chapter 4, we observe the effect of cavity dissipation on various systems exhibiting

bipartite entanglement. In chapter 6 we analyze a new and counter-intutive mechanism

using various dissipative atom-cavity systems to show that their collective dynamics can

be used to maximize entanglement for intermediate values of the cavity leakage parameter.

1.5 Plan

From our introductory discussions, it is apparent that the first task is to generate en-

tangled quantum states in atom-phton interactions and understand their characteristics

before making use of them. So with this above motivation the thesis is organised as

follows.

In chapter 2 we discuss the Jaynes-Cummings model [26] which is an exactly solvable

model describing atom-photon interactions. This model consists of a two-level atom

3In discussion of the master equation (see Appendix 1 on page 114), the environment is typically called

the reservoir, in deference to the deeply ingrained conventions of statistical physics.
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interacting with a single mode radiation field. The resonant Jaynes-Cummings dynamics

is considered for simplicity. We describe how the initial atom-photon state evolves under

the Jaynes-Cummings interaction. We also discuss the action of dissipative dynamics

on atom-photon interactions. We consider only the field-reservoir interaction since the

lifetime of the atom is much longer than the atom-photon interaction time. We show

a model solution of the complete atom-field evolution equation [27]. When a two-level

atom and a photon undergo the Jaynes-Cummings interaction, they become entangled

as a rule. We investigate various types of entanglement such as atom-cavity, atom-atom

and cavity-cavity entanglements in both the ideal situation, and also in presence of cavity

dissipation. We quantify these entanglements with the entanglement measure concurrence

[22, 23]. We observe the effects of cavity dissipation on the magnitude of entanglement

generated. We see in general that the cavity dissipation reduces the entanglement as the

atom-cavity interaction time increases.

In chapter 3 we investigate the entanglement dynamics in the one-atom micromaser

[29, 30, 31]. The one-atom micromaser is an experimental realization of Jaynes-Cummings

model and has been operational for several years [31, 32]. First we describe the micro-

maser setup and discuss the micromaser dynamics which is governed by (i) the atom-field

interaction, and (ii) the field-reservoir interaction. The steady-state micromaser field dis-

tribution function depending on the field-reservoir coupling is obtained [33]. We consider

two two-level Rydberg atoms prepared in their excited states which traverse the micro-

maser cavity one after another such that there is not more than a single atom at any time

inside the cavity. Although there is no direct overlap between the two atoms, the emerging

atoms will be correlated. The reason behind this correlation is that when the first atom

passes through the cavity, it leaves an imprint on the photons inside the cavity, and the

second atom interacts with the cavity state which has been modified by the passage of the

first atom. In this way a secondary correlation develops between the atoms. We see that

two-atom entanglement can be generated by controlling dissipation for experimentally

attainable values of the micromaser parameters [9]. We compute this atom-atom entan-

glement versus time for different micromaser parameters. Such entanglement can also be

used to formulate an experimental proposal for testing the violation of Bell’s inequality

[20]. The steady-state photon statistics of the micromaser field are reflected in the en-
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tanglement properties of the emerging atoms. We compute the Shannon entropies of the

steady-state micromaser field before and after the passage of two atoms, and investigate

the correspondance between the two-atom entanglement and the difference between the

Shannon entropies.

Several characteristics of atomic entanglement and quantum information transfer in

atom-photon interactions are discussed quantitatively in chapter 3. Entanglement is more-

over endowed with certain curious features. Unlike classical correlations, quantum entan-

glement can not be freely shared among many quantum systems. It has been observed

that a quantum system being entangled with another one limits its possible entanglement

with a third system. This has been dubbed the “monogamous nature of entanglement”

which was first proposed by Bennett [34]. In chapter 4 we perform a quantitative study of

the monogamy of quantum entanglement and its swapping both in ideal and dissipative

atom-photon interactions. We show the “monogamous nature of entanglement” in differ-

ent systems. First we consider a tripartite system of two maximally entangled cavities

and a single two-level atom prepared in the ground state which passes through the first

cavity. In the second case we consider a tripartite system of two maximally entangled

two-level atoms and a single empty cavity where the first atom passes through the empty

cavity. In the first case we see the monogamous nature between the entanglement of

the pair of two cavities and the pair of second cavity and the atom respectively. We

further see that this curious behaviour of entanglement is sustained in presence of cavity

dissipation [35]. Similarly we get the same result for the pair of two atoms and the pair

of the second atom and the cavity. A “monogamy” inequality [36] for these tripartite

system is quantitatively studied and verified in the presence of cavity leakage. Another

distinctive property of quantum entanglement for multipartite systems is the possibility of

entanglement swapping between two or more pairs of qubits. Entanglement swapping is

observed between the the two-cavity and the two-atom system. Cavity dissipation leads to

the quantitative reduction of information transfer though preserving the basic swapping

property [35].

After having discussed the features of entanglement generated by the interaction of

two-level atoms with single cavity modes, it is natural to ask the question as to what

effect the cavity field properties have on such entanglement. With this aim in mind,
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in chapter 5, we study the entanglement properties of a pair of two-level atoms going

through a cavity filled with different types of radiation field. We consider the atoms to

traverse the cavity one after another as in the micromaser model discussed in chapter

3. The initial joint state of two successive atoms that enter the cavity is unentangled.

Interactions mediated by the cavity photon field result in the final two-atom state being

of a mixed entangled type. We consider various different kinds of field statistics such as

that of the Fock state field, the thermal field, and the coherent state field, respectively,

inside the cavity. The entanglement of formation of the joint two-atom state is calculated

for both these cases as a function of the Rabi angle gt. We present a comparative study

of two-atom entanglement for low and high mean photon number cases corresponding to

the different field statistics [12, 13]. We further investigate the consequences on atomic

entanglement by squeezing of the radiation field inside the cavity. It is possible to show

[13] that squeezing of the cavity field can increase atomic entanglement if the average

cavity photon number is held fixed.

As stated earlier, the effects of dissipative dynamics on the magnitude of entanglement

generated in atom-photon interactions inside cavities is a focal point of our investigations

presented in this thesis. In order to use quantum entanglement as a resource, one has to

ensure that is survives long enough for information protocols to be implemented. This can

be acomplished, for example, by controlling cavity leakage in the micromaser. However,

recently, certain systems have been found [10, 12, 37, 38, 39, 40, 41] where entangle-

ment is seen to be generated through interaction with the environment. In chapter 6 we

present some concrete examples of environment induced entanglement in atom-photon

interections. We consider various dissipative atom-cavity systems and show that their

collective dynamics can be used to maximize entanglement for intermediate values of the

cavity leakage parameter κ [42]. We first consider the interaction of a single two-level

atom with one of two coupled microwave cavities and show analytically that the atom-

cavity entanglement increases with cavity leakage. We next consider a system of two

atoms passing successively through a cavity and derive the expression for the maximum

value of κ in terms of the Rabi angle gt, for which the two-atom entanglement can be in-

creased. Further, numerical investigation of micromaser dynamics also reveals the increase

of two-atom entanglement with stronger cavity-environment coupling for experimentally
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attainable values of the micromaser parameters.

In the final chapter we present a concluding summary of the main results obtained

in the various chapters of this thesis. We provide brief discussions of the implications

of our results and possible extensions of our investigations with the aim of motivating

future directions and associated interesting lines of research that have cropped up from

our study.



Chapter 2

Entanglement in the Jaynes-Cummings model with

dissipation

2.1 The Jaynes-Cummings model

One of the most fundamental models in quantum mechanics presented in introductory

text books is that of the two-level system and the harmonic oscillator. Combining these

two into a bipartite system gives many interesting results using one of the most studied

models, i.e., the Jaynes Cummings (JC) model [26]. The JC model is the simplest fully

quantized model describing the interaction between a two-level atom and a quantized

electromagnetic field. The model consists of a single two-level atom interacting with a

single quantized electromagnetic cavity field (Figure 2.1).

The Jaynes-Cummings Hamiltonian is obtained by simply imposing the rotating wave

approximation RWA [28]. In this approximation exact analytical solutions exist, and

in spite of the simplicity of the JC model, the dynamics have turned out to be very

rich and complex, describing well several physical phenomena. Among these, atom-field

photon

e

g

ω
ω

Figure 2.1: A two-level atom-photon interaction.

19
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entanglement [43, 44, 45] is a very interesting subject of research. We have used the

Jaynes-Cummings interaction to investigate atom-cavity, atom-atom and cavity-cavity

entanglements. In this chapter we will disscuss atom-cavity, atom-atom and cavity-cavity

entanglement in detail without and with cavity field dissipation.

A two level atom is formally analogous to a spin-1/2 system with two possible states.

Let us denote the upper level of the atom as |e〉 and the lower level as |g〉. Here we can

write the step up and the step down operator as σ+ = |e〉〈g| and σ− = |g〉〈e|, with the

commutation relation

[σ+, σ−] = |e〉〈e| − |g〉〈g|
= σz. (2.1)

A quantum mechanical field can be represented as (for present purpose, we consider a

single mode field)

E(t) =
E
2

[ae−iωt + a†eiωt] (2.2)

apart from a mode function which we omit here as it is not required for the present

discussion. Here a and a† are annihilation and creation operators, respectively, ω is the

frequency of the field and E has the dimension of electric field. The graininess of the

radiation field is represented by the photon number state |n〉, n = 0, 1, 2, ...., such that

a|n〉 =
√
n|n− 1〉 and a†|n〉 =

√
n+ 1|n+ 1〉. It is an eigenstate of the number operator

n̂ = a†a, n̂|n〉 = n|n〉. The field in Eq.(2.2) can be represented by a quantum mechanical

state vector |ψ〉 which is a linear superposition of the number states |n〉, that is

|ψ〉 =
∞
∑

n=0

cn|n〉 (2.3)

where cn is, in general, complex and gives the probabilty that the field has n photons by

the relation

Pn = 〈n|ψ〉〈ψ|n〉 = |cn|2 (2.4)

It is now a quantum statistical field and its average photon number is given by

< n >=
∞
∑

n=0

nPn (2.5)
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with the intensity of the field I ∝< n >. The statistics brings in a quantum mechanical

noise which is represented by the variance

V =
< n2 > − < n >

< n2 >
. (2.6)

V = 1 is for coherent state field and V < 1 signifies a non-classical state. The parameters

< n > and V give a fair description of the quantum mechanical nature of the radiation

field. The interaction between the two-level atom and the single mode field can be written

in the dipole approximation as, Hint = d.E/h̄. Here Hint is in frequency units, and d is

the dipole moment of the atom which can be witten as d = −〈e|x|g〉. Writing E in

terms of operators in Eq.(2.2), and the dipole moment by spin operators in Eq.(2.1), the

interacting atom-field system can be represented by the Hamiltonian

H = H0 +Hint, (2.7)

where the unperturbed Hamiltonian H0 = Ωσz

2
+(a†a+ 1

2
)ω and Hint = g(σ+ +σ−)(a+a†)

and g = −dE
h̄

is the coupling constant. The interaction part contains four terms. The term

σ+a which is an energy conserving term describes the process in which the atom is taken

from the lower to the upper state with the absorption of a photon (Figure 2.2). The term

σ−a† which is also an energy conserving term describes the process in which the atom

is taken from the upper to the lower state with the emission of a photon (Figure 2.3).

The term σ+a† which is an energy non-conserving term describes the process in which

the atom is taken from the lower to the upper state with the emision of a photon (Figure

2.4). The term σ−a, also a non-conserving term, describes the process in which the atom

is taken from the upper to the lower state with the absorption of a photon (Figure 2.5).

Since the last two terms are energy non-conserving, they have been dropped from the

Hamiltonian. This is also known as the rotating-wave approximation in quantum optics.

So the Jaynes-Cummings Hamiltonian reduces to

H =
Ωσz
2

+ (a†a + 1/2)ω + g(σ+a+ σ−a†). (2.8)

Now if we consider resonant atom-field interaction (field frequency and atomic transition

frequency are the same), Eq.(2.8) is rewritten as

H =
ωσz
2

+ (a†a+ 1/2)ω + g(σ+a + σ−a†). (2.9)
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Figure 2.2: A two-level atom taken from the lower to the upper state with the absorption

of a photon. It is the term σ+a.

Figure 2.3: A two-level atom taken from the upper to the lower state with the emission

of a photon. It is the term σ−a†.

Figure 2.4: A two-level atom taken from the lower to the upper state with the emision of

a photon. It is the term σ+a†.

Figure 2.5: A two-level atom taken from the upper to the lower state with the absorption

of a photon. It is the term σ−a.
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In a frame rotating at frequency ω[σz/2 + (a†a+ 1)], the equation of motion defining the

system is

i
∂

∂t
|ψ(t)〉I = HI |ψ(t)〉I , (2.10)

where the Hamiltonian H reduces to

HI = g(σ+a + σ−a†). (2.11)

We deal with this interaction Hamiltonian HI to investigate the atom-cavity, atom-

atom, and cavity-cavity entanglements in this chapter. If we denote an atom-photon state

by |Ψ〉, the dynamics of atom-photon interaction is governed by the equation

i|Ψ̇〉 = HI |Ψ〉. (2.12)

Its density operator ρ = |Ψ〉〈Ψ| obeys the equation of motion

ρ̇ = i(|Ψ̇〉〈Ψ| + |Ψ〉〈Ψ̇|)
= HI |Ψ〉〈Ψ| − |Ψ〉〈Ψ|HI

= HIρ− ρHI = [HI , ρ]. (2.13)

Therefore

ρ̇ = −i[HI , ρ]. (2.14)

2.1.1 The energy eigenstates of the Jaynes-Cummings Hamiltonian

Energy conservation considerations indicate that the states |e, n〉 and |g, n + 1〉 are con-

nected by the interaction Hamiltonian HI for n = 0, 1, 2, 3, .......... After the interaction,

the vectors |e, n〉 and |g, n+ 1〉 form a basis for the atom-field system. Let the eigenstate

of the interaction Hamiltonian be written as

|ψ〉 = c1|e, n〉 + c2|g, n+ 1〉, (2.15)

with the normalizing condition |c1|2 + |c2|2 = 1. So we can write

H|ψ〉 = λ|ψ〉
= λ(c1|e, n〉 + c2|g, n+ 1〉), (2.16)
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where λ is the eigenvalue of Hamiltonian HI . Also we have

g(σ+a+ σ−a†)|ψ〉 = g
√
n+ 1(c1|a, n〉 + c2|g, n+ 1〉). (2.17)

Comparing Eq.(2.16) and Eq.(2.17) we get gc2
√
n + 1 = λc1 and gc1

√
n+ 1 = λc2 Hence

we get the eigen values

λ = ±(g
√
n + 1).

Now with the normalizing condition |c1|2 + |c2|2 = 1, when λ1 = (g
√
n + 1) we choose

c1 = 1√
2
, c2 = i√

2
, and for λ2 = −(g

√
n + 1) we choose c1 = 1√

2
, c2 = − i√

2
. Therefore the

energy eigenstates of the Hamiltonian are given by

|ψ+〉 =
1√
2

[|e, n〉 + i|g, n+ 1〉] , (2.18)

and

|ψ−〉 =
1√
2

[|e, n〉 − i|g, n+ 1〉] . (2.19)

There are also known as dressed states of the system.

2.1.2 Various atom-field evolved states under the Jaynes-Cummings in-

teraction

Suppose the atom-field system is in an initial state

|Ψ(t = 0)〉 = |e〉 ⊗ |n〉. (2.20)

Then, the time evolution of the state vector is

|Ψ(t)〉 = e−iHI t|Ψ(t = 0)〉,
= e−iHI t|e, n〉,

= e−iHI t

[

1√
2
(|ψ+〉 + |ψ−〉)

]

, (2.21)

where we have used

|e, n〉 =
1√
2
[|ψ+〉 + |ψ−〉]. (2.22)
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Thus,

|Ψ(t)〉 =
1

2

[(

ei(g
√
n+1)t + e−i(g

√
n+1)t

)

|e, n〉

− i
(

ei(g
√
n+1)t − e−i(g

√
n+1)t

)

|g, n+ 1〉
]

= cos(g
√
n + 1)t|e, n〉 + sin(g

√
n + 1)t|g, n+ 1〉. (2.23)

Now let us study the time evolution of the initial state

|Ψ(t = 0)〉 = |g〉 ⊗ |n+ 1〉. (2.24)

Therefore

|Ψ(t)〉 = e−iHI t|Ψ(t = 0)〉,
= e−iHI t|g, n+ 1〉,

= e−iHI t

[

1√
2i

(|ψ+〉 − |ψ−〉)
]

, (2.25)

where we have used

|g, n+ 1〉 =
1√
2i

[|ψ+〉 − |ψ−〉]. (2.26)

Thus,

|Ψ(t)〉 =
1

2

[

i
(

ei(g
√
n+1)t − e−i(g

√
n+1)t

)

|e, n〉

− i.i
(

ei(g
√
n+1)t + e−i(g

√
n+1)t

)

|g, n+ 1〉
]

= cos(g
√
n + 1)t|g, n+ 1〉 − sin(g

√
n+ 1)t|e, n〉. (2.27)

However, the time evolution of the state |Ψ(0)〉 = |g, 0〉 remains unchanged, i.e.,

|Ψ(t)〉 = e−iHI t|g, 0〉 = |g, 0〉. (2.28)

2.2 Dissipative dynamics

Let us now investigate the dynamics of atom-photon interactions in the presence of cavity

dissipation. Since the lifetime of a two-level Rydberg atom is usually much longer com-

pared to the atom-cavity interaction time, we can safely neglect the atomic dissipation.

The dynamics of the atom-photon interaction is governed by the evolution equation

ρ̇ = ρ̇|atom-field + ρ̇|field-reservoir, (2.29)
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where the strength of the couplings are given by the parameters κ (the cavity leakage

constant) and g (the atom-field interaction constant). ρ̇|atom-field = −i[HI , ρatom-field]

obtained from Eq.(2.14). The reservoir-induced interactions can be effectively represented

by the well-known master equations [46, 47] using Born and Markoff approximations. For

the reservoir coupling we have, after tracing over the reservoir variables,

ρ̇|field-reservoir = −κ(1+ < n >)(a†aρ− 2aρa† + ρa†a)

−κ < n > (aa†ρ− 2a†ρa + ρaa†), (2.30)

where < n > is average thermal photons at the cavity temperature T . A derivation of this

equation is given in the Appendix 1 on page 114. At temperature T = 0K the average

thermal photon number is zero, and hence one has [47]

ρ̇|field-reservoir = −κ(a†aρ− 2aρa† + ρa†a). (2.31)

The total dynamical equation for atom-field density state ρ, is thus given by

ρ̇ = −i[HI , ρatom-field] − κ(a†aρ− 2aρa† + ρa†a). (2.32)

2.2.1 A model solution

In cavity-QED, one usually has g ≫ κ. Hence, in most cases, it is sufficient to get a

solution of Eq.(2.32) to the first order in κ. Towords this, we start with the dressed states

of HI given by

|+, n〉 =
1√
2
[|e, n〉 + |g, n+ 1〉], (2.33)

and

|−, n〉 =
1√
2
[−|e, n〉 + |g, n+ 1〉]. (2.34)

For n = 0 the dressed state basis become

|+, 0〉 =
1√
2
[|e, 0〉 + |g, 1〉], (2.35)

and

|−, 0〉 =
1√
2
[−|e, 0〉 + |g, 1〉]. (2.36)
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At T = 0K, the only relevant states are |+, 0〉, |−, 0〉 and |g, 0〉. The action of the atom

and the field operators on these states yield

a|+, 0〉 =
1√
2
|g, 0〉. (2.37)

a|−, 0〉 =
1√
2
|g, 0〉. (2.38)

a|g, 0〉 = 0. (2.39)

a†|+, 0〉 = 0. (2.40)

a†|−, 0〉 = 0. (2.41)

a†|g, 0〉 =
1√
2
[|e, 0〉 + |g, 1〉]. (2.42)

HI |e, 0〉 = g|g, 1〉. (2.43)

HI |g, 1〉 = g|e, 0〉. (2.44)

HI |g, 0〉 = 0. (2.45)

HI |+, 0〉 = g|+, 0〉. (2.46)

HI |−, 0〉 = −g|−, 0〉. (2.47)

It is straightforward to express the damping equation for the density matrix elements

in the dressed state basis.

〈+, 0|ρ̇|+, 0〉 = −κ〈+, 0|ρ|+, 0〉 − κ

2
〈−, 0|ρ|+, 0〉

−κ
2
〈+, 0|ρ|−, 0〉. (2.48)
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〈−, 0|ρ̇|−, 0〉 = −κ〈−, 0|ρ|−, 0〉 − κ

2
〈+, 0|ρ|−, 0〉

−κ
2
〈−, 0|ρ|+, 0〉. (2.49)

〈+, 0|ρ̇|−, 0〉 = −2ig〈+, 0|ρ̇|−, 0〉 − κ〈+, 0|ρ|−, 0〉
−κ

2
〈+, 0|ρ|+, 0〉 − κ

2
〈−, 0|ρ|−, 0〉. (2.50)

We note that the terms 〈+, 0|ρ|+, 0〉 and 〈−, 0|ρ|−, 0〉 oscillate at zero frequency (or donot

oscillate), whereas the terms 〈+, 0|ρ̇|−, 0〉 oscillate at frequency g. The strength of the

coupling of these terms are of the order of κ. Hence, for g ≫ κ, it is reasonable to assume

that they decouple. In other words, we can neglect their coupling. In the literature, such

an approximation is called the “secular approximation”. Under this approximation, the

equations of motion reduce to

〈+, 0|ρ̇|+, 0〉 = −κ〈+, 0|ρ|+, 0〉. (2.51)

〈−, 0|ρ̇|−, 0〉 = −κ〈−, 0|ρ|−, 0〉. (2.52)

〈+, 0|ρ̇|−, 0〉 = −2ig〈+, 0|ρ̇|−, 0〉 − κ〈+, 0|ρ|−, 0〉. (2.53)

The obvious solutions of Eq.(2.51), Eq.(2.52) and Eq.(2.53) are

〈+, 0|ρ|+, 0〉t = e−κt〈+, 0|ρ|+, 0〉t=0, (2.54)

〈−, 0|ρ|−, 0〉t = e−κt〈−, 0|ρ|−, 0〉t=0, (2.55)

〈+, 0|ρ|−, 0〉t = e−2igte−κt〈+, 0|ρ|−, 0〉t=0. (2.56)

We also work under a further approximation (that is justified when the cavity is close

to 0K) that the probability of getting two or more photons inside the cavities is zero, or

in other words, the cavity always remains in the two-level state comprising of |0 > and

|1 >. For example, the initial state |e, 0〉 corresponds to the boundary condition

〈+, 0|ρ|+, 0〉t=0 = 〈−, 0|ρ|−, 0〉t=0 =
1

2
, (2.57)
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and

〈+, 0|ρ|−, 0〉t=0 = −1

2
. (2.58)

Therefore

〈e, 0|ρ|e, 0〉t =
1

2
[〈+, 0|ρ|+, 0〉t + 〈−, 0|ρ|−, 0〉t

− 〈+, 0|ρ|−, 0〉t − 〈−, 0|ρ|+, 0〉t]
=

1

2
e−κt[1 + cos 2gt]

= e−κt cos2 gt, (2.59)

〈g, 1|ρ|g, 1〉t =
1

2
[〈+, 0|ρ|+, 0〉t + 〈−, 0|ρ|−, 0〉t

+ 〈+, 0|ρ|−, 0〉t + 〈−, 0|ρ|+, 0〉t]
=

1

2
e−κt[1 − cos 2gt]

= e−κt sin2 gt, (2.60)

and

〈e, 0|ρ|g, 1〉t =
1

2
[〈+, 0|ρ|+, 0〉t + 〈+, 0|ρ|−, 0〉t

− 〈−, 0|ρ|+, 0〉t − 〈−, 0|ρ|−, 0〉t]
=

i

2
e−κt[sin 2gt]

= ie−κt sin gt cos gt, (2.61)

〈g, 1|ρ|e, 0〉t = −ie−κt sin gt cos gt. (2.62)

The initial state |g, 1〉 corresponds to the boundary condition

〈+, 0|ρ|+, 0〉t=0 = 〈−, 0|ρ|−, 0〉t=0 =
1

2
, (2.63)

and

〈+, 0|ρ|−, 0〉t=0 =
1

2
. (2.64)
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Therefore

〈e, 0|ρ|e, 0〉t =
1

2
[〈+, 0|ρ|+, 0〉t + 〈−, 0|ρ|−, 0〉t

− 〈+, 0|ρ|−, 0〉t − 〈−, 0|ρ|+, 0〉t]
=

1

2
e−κt[1 − cos 2gt]

= e−κt sin2 gt, (2.65)

〈g, 1|ρ|g, 1〉t =
1

2
[〈+, 0|ρ|+, 0〉t + 〈−, 0|ρ|−, 0〉t

+ 〈+, 0|ρ|−, 0〉t + 〈−, 0|ρ|+, 0〉t]
=

1

2
e−κt[1 + cos 2gt]

= e−κt cos2 gt, (2.66)

and

〈e, 0|ρ|g, 1〉t =
1

2
[〈+, 0|ρ|+, 0〉t + 〈+, 0|ρ|−, 0〉t

− 〈−, 0|ρ|+, 0〉t − 〈−, 0|ρ|−, 0〉t]
= − i

2
e−κt[sin 2gt]

= −ie−κt sin gt cos gt, (2.67)

〈g, 1|ρ|e, 0〉t = ie−κt sin gt cos gt. (2.68)

The above method provides a typical way of solving cavity-QED coupled equations with

dissipation. We use them here to study the effect of cavity dissipation on entanglement.

2.3 Various types of entanglement and the effect of cavity dis-

sipation on them

In this section we investigate the various types of entanglement such as atom-cavity en-

tanglement, atom-atom entanglement, and cavity-cavity entanglement in an ideal cavity

as well as their evolution in presence cavity dissipation. We quantify the entanglement ei-

ther with the entanglement measure ‘concurrence’ or ‘entanglement of formation’ [22, 23],

through we know that for pure state the von Neumann entropy and ‘entanglement of

formation’ are the same.
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C

A

1

1

Figure 2.6: A two-level atom prepared in the excited state is traversing through an epmty

cavity.

2.3.1 Atom-cavity entanglement

Let us first consider a two-level atom A1 prepared in the excited state |e〉 passing through

an empty cavity C1 (Figure 2.6). The initial joint state of atom-cavity bipartite system is

|ΨA1C1
(t = 0)〉 = |e〉 ⊗ |0〉. (2.69)

The atom-field joint state evolves under the Jaynes-Cummings interaction to

|ΨA1C1
(t)〉 = cos gt|e, 0〉 + sin gt|g, 1〉, (2.70)

which is obtained from Eq.(2.23) by putting n = 0. Therefore, the density state can be

written as

ρA1C1
(t) = |ΨA1C1

(t)〉〈ΨA1C1
(t)|

= cos2 gt|e, 0〉〈e, 0|+ cos gt sin gt|e, 0〉〈g, 1|
+ cos gt sin gt|g, 1〉〈e, 0|+ sin2 gt|g, 1〉〈g, 1| (2.71)

The corresponding density matrix ρA1C1
(t) can be written as

ρ =













0 0 0

0 cos2 gt cos gt sin gt 0

0 cos gt sin gt sin2 gt 0

0 0 0 0













, (2.72)

in the basis |e, 1 >, |e, 0 >, |g, 1 > and |g, 0 > states. The concurrence C of ρA1C1
(t) is

2| cos gt sin gt|. C is maximum (= 1) for Rabi angle gt = (2n+1)π/4. So for an interaction

time gt = (2n + 1)π/4, |ΨA1C1
(t)〉 becomes maximally entangled and for an interaction
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Figure 2.7: Atom-cavity entanglement i.e., concurrence is plotted vs gt

time gt = nπ/2, |ΨA1C1
(t)〉 becomes disentangled. In Figure 2.7 the concurrence C

between the atom and the cavity is plotted versus the Rabi angle gt.

Next, we discuss the above case in presence of cavity dissipation. At temperature

T = 0K, the average thermal photon number is zero, and one has (see, for instance, Ref.

[47])

ρ̇|field-reservoir = −κ(a†aρ− 2aρa† + ρa†a), (2.73)

as in Eq.(2.31). When g ≫ κ, it is possible to make the secular approximation [27]

(discussed in section 2.3) to get the density elements of ρA1C1
(t). We also work under

a further approximation (which is justified when the cavity is close to 0K) that the

probability of getting two or more photons inside the cavity is zero. The method of

solving the dissipation equation has been outlined in section 2.2.1. The joint density

state of atom and cavity is then obtained as

ρA1C1
(t) = (e−κt cos2 gt|e, 0〉〈e, 0|+ ie−κt cos gt sin gt|e, 0〉〈g, 1|

−ie−κt cos gt sin gt|g, 1〉〈e, 0|+ e−κt sin2 gt|g, 1〉〈g, 1|), (2.74)

where κ is leakage constant for cavity C1. The corresponding density matrix ρA1C1
(t) is
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Figure 2.8: Atom-cavity entanglement i.e., concurrence is plotted vs gt for (i) κ/g = 0.05

(solid line), (ii) κ/g = 0.1 (dashed line).

given by

ρ =













0 0 0

0 e−κt cos2 gt ie−κt cos gt sin gt 0

0 −ie−κt cos gt sin gt e−κt sin2 gt 0

0 0 0 0













, (2.75)

in the basis of |e, 1 >, |e, 0 >, |g, 1 > and |g, 0 > states.

The concurrence C of ρA1C1
(t) is |2e−κt cos gt sin gt|. In Figure 2.8 the concurrence C

between the atom and the cavity is plotted versus the Rabi angle gt for different values of

the cavity leakage constant κ/g. We see clearly the effect of dissipation on entanglement

which reduces as we increase the cavity leakage constant κ. This shows that disipation

reduces the atom-cavity entanglement and, ultimately it is destroyed at a later time. If

we send an atom prepared in the ground state |g〉 through the one photon cavity, the

initial joint atom-cavity state will be

|Ψ(t = 0)〉 = |g〉 ⊗ |1〉. (2.76)

The time evolved state is

|Ψ(t)〉 = cos gt|g, 1〉 − sin gt|e, 0〉. (2.77)

In this case the result for entanglement is similar to the case for the state

|Ψ(t)〉 = cos gt|e, 0〉 + sin gt|g, 1〉, (2.78)
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Figure 2.9: Two two-level atoms, first prepared in the excited state and second prepared

in the ground state, traverses an empty cavity one after the other.

that we have considered earlier, both with and without dissipation.

2.3.2 Atom-atom entanglement

We consider a system where two two-level atoms, the first prepared in the excited state

and the second prepared in the ground state, are sent into a cavity in the vacuum state

one after the other (see Figure 2.9). The flight times of both the atoms through the cavity

are assumed to be the same.

Let us first consider the passage of the first atom, initially in the excited state |e >,

through the cavity. The initial joint atom-field state is given by

|Ψ(t = 0)〉A1C1
= |e〉 ⊗ |0〉. (2.79)

The atom-field state evolves with the interaction given by Eqs.(2.70) to

|Ψ(t)A1C1
〉 = cos gt|e, 0〉 + sin gt|g, 1〉, (2.80)

The next atom prepared in |g > which enters the cavity interacts with this “changed”

field and thus a correlation develops between the two atoms via the cavity field. The joint

tripartite state of the two atoms and the field is given by

|Ψ(t)〉A1A2C1
= cos gt|e1, g2, 0〉 + cos gt sin gt|g1, g2, 1〉

− sin2 gt|g1, e2, 0〉 (2.81)

The corresponding atom-atom-field pure density state is

ρ(t)A1A2C1
= |Ψ(t)〉A1A2C1 A1A2C1

〈Ψ(t)|
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= cos2 gt|e1, g2, 0〉〈e1, g2, 0| + cos2 gt sin2 gt|g1, g2, 1〉〈g1, g2, 1|
+ sin4 gt|g1, e2, 0〉〈g1, e2, 0| + cos2 gt sin gt|e1, g2, 0〉〈g1, g2, 1|
+ cos2 gt sin gt|g1, g2, 1〉〈e1, g2, 0| − cos gt sin2 gt|e1, g2, 0〉〈g1, e2, 0|
− cos gt sin2 gt|g1, e2, 0〉〈e1, g2, 0| − cos gt sin3 gt|g1, g2, 1〉〈g1, e2, 0|
− cos gt sin3 gt|g1, e2, 0〉〈g1, g2, 1|. (2.82)

The reduced density state of the pair A1A2 is obtained by tracing out the field variables,

and is given by

ρ(t)A1A2
= TrC1

(ρA1A2C1
)

= cos2 gt|e1, g2〉〈e1, g2| + cos2 gt sin2 gt|g1, g2〉〈g1, g2|
+ sin4 gt|g1, e2〉〈g1, e2| − cos gt sin2 gt|g1, e2〉〈e1, g2|
− cos gt sin2 gt|e1, g2〉〈g1, e2| (2.83)

The corresponding density matrix ρA1A2
(t) is given by

ρ =













cos2 gt sin2 gt 0 0

0 sin4 gt − cos gt sin2 gt 0

0 − cos gt sin2 gt cos2 gt 0

0 0 0 0













, (2.84)

in the basis |g1, g2 >, |g1, e2 >, |e1, g2 > and |e1, e2 > states.

We compute the concurrence for ρ(t)A1A2
that is

C (ρ(t)A1A2
) = |2 cos gt sin2 gt|. (2.85)

The concurrence between the two atoms is plotted versus the Rabi angle gt in Figure

2.10.

We now investigate the above study in presence of the cavity dissipation. Like in

the previous section, in the presence of cavity dissipation the evolved state of the system

A1A2C1 is a mixed state and is obtained with the above approximations (see section

2.2.1). The reduced density state of the pair A1A2 is

ρ(t)A1A2
= TrC1

(ρA1A2C1
)

= γ1|e1g2〉〈e1g2|
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Figure 2.10: Atom-atom entanglement i.e., concurrence is plotted vs gt

+ γ2|g1g2〉〈g1g2|
+ γ3|g1e2〉〈g1e2|
− γ4|e1g2〉〈g1e2|
− γ4|g1e2〉〈e1g2|, (2.86)

where the γi are given by

γ1 = (1 − sin2 gte−κt),

γ2 = cos2 gt sin2 gte−2κt,

γ3 = sin4 gte−2κt,

γ4 =
(

sin gte−κt/2 − κ

2g
cos gte−κt/2 +

κ

2g

)

cos gt sin gte−κt,

κ is the leakage constant of cavity C1. The corresponding density matrix ρA1A2
(t) is

ρ =













γ2 0 0

0 γ3 −γ4 0

0 −γ4 γ1 0

0 0 0 0













, (2.87)

in the basis of |g1, g2 >, |g1, e2 >, |e1, g2 > and |e1, e2 > states.

We compute the concurrence for ρ(t)A1A2
, i.e.,

C (ρ(t)A1A2
) = |2 sin2 gte−κt

√

(1 − sin2 gte−κt)| (2.88)
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Figure 2.11: Atom-atom entanglement i.e., concurrence is plotted vs gt for (i) κ/g = 0.05

(solid line) (ii) κ/g = 0.1 (dashed line).

C C1 2

1A

Figure 2.12: A two-level atom prepared in the excited state is traversing through two

separated cavities one after another.

The concurrence between the two atoms is plotted versus the Rabi angle gt in Figure

2.11 for different values of the cavity dissipation parameter κ. The entanglement reduces

as we increase κ. The effect of κ gets more and more pronouced as time increases.

2.3.3 Cavity-cavity entanglement

Here we consider two initially separated empty cavities C1, C2 and a two-level atom

prepared in the excited state passing through C1 and C2 such that the times of flight of

the atom through the two cavities are the same (see Figure 2.12). The initial joint state

of the atom and the two cavities is

|Ψ(t)〉A1C1C2
= |e1〉 ⊗ |01〉 ⊗ |02〉. (2.89)
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The joint state of the two cavities and the atom undergoing the Jaynes-Cummings inter-

action at a later time is

|Ψ(t)〉A1C1C2
= cos2 gt|e1, 02, 02〉 + cos gt sin gt|g1, 01, 12〉

− sin gt|g1, 11, 02〉. (2.90)

The corresponding cavity-cavity-atom tripartite pure density state is

ρ(t)A1C1C2
= |Ψ(t)〉A1C1C2 A1C1C2

〈Ψ(t)|
= cos4 gt|e1, 01, 02〉〈e1, 01, 02| + cos2 gt sin2 gt|g1, 01, 12〉〈g1, 01, 12|
+ sin2 gt|g1, 11, 02〉〈g1, 11, 02| + cos3 gt sin gt|e1, 01, 02〉〈g1, 01, 12|
+ cos2 gt sin gt|e1, 01, 02〉〈g1, 11, 02| + cos3 gt sin gt|g1, 01, 12〉〈e1, 01, 02|
+ cos gt sin2 gt|g1, 01, 12〉〈g1, 11, 02| + cos2 gt sin gt|g1, 11, 02〉〈e1, 01, 02|
+ cos gt sin2 gt|g1, 11, 02〉〈g1, 01, 12|. (2.91)

The reduced density state of the pair C1C2 is

ρ(t)C1C2
= TrA1

(ρA1C1C2
)

= cos4 gt|01, 02〉〈01, 02| + cos2 gt sin2 gt|01, 12〉〈01, 12|
+ sin2 gt|11, 02〉〈11, 02| + cos gt sin2 gt|11, 02〉〈01, 12|
+ cos gt sin2 gt|01, 12〉〈11, 02|. (2.92)

The corresponding density matrix ρC1C2
(t) is given by

ρ =













cos4 gt 0 0

0 sin2 gt cos2 gt cos gt sin2 gt 0

0 cos gt sin2 gt sin2 gt 0

0 0 0 0













, (2.93)

in the basis of |01, 02 >, |01, 12 >, |11, 02 > and |11, 12 > states. We find that the concur-

rence for ρ(t)C1C2
has the form

C (ρ(t)C1C2
) = |2 cos gt sin2 gt|. (2.94)

The concurrences of the two atoms (see earlier section) and the two cavities are similar

functions of the Rabi angle. The concurrence between two cavities is plotted versus the
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Figure 2.13: Cavity-cavity entanglement i.e., concurrence is plotted vs gt

Rabi angle gt in Figure 2.13.

The time evolution of the reduced density state of two cavities in presence of dissipation

is, following the method outlined earlier,

ρ(t)C1C2
= TrA1

(ρA1C1C2
)

= e−2κt cos4 gt|01, 02〉〈01, 02| + e−2κt cos2 gt sin2 gt|01, 12〉〈01, 12|
+ (1 − e−κt cos2 gt)|11, 02〉〈11, 02| + e−

3κt
2 cos gt sin2 gt|11, 02〉〈01, 12|

+ e−
3κt
2 cos gt sin2 gt|01, 12〉〈11, 02|. (2.95)

The corresponding density matrix ρA1A2
(t) is given by

ρ =













e−2κt cos4 gt 0 0

0 e−2κt sin2 gt cos2 gt e−
3κt
2 cos gt sin2 gt 0

0 e−
3κt
2 cos gt sin2 gt (1 − e−κt cos2 gt) 0

0 0 0 0













, (2.96)

in the basis of |01, 02 >, |01, 12 >, |11, 02 > and |11, 12 > states. We compute the concur-

rence for ρ(t)C1C2
, that is given by

C (ρ(t)C1C2
) = |2 cos gt sin2 gte−

3κt
2 |. (2.97)

The concurrence between two cavities is plotted versus the Rabi angle gt in Figure 2.14

for different values of the cavity dissipation parameter κ. The effect of κ gradually reduces

the entanglement as it evolves in time.
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Figure 2.14: Cavity-cavity entanglement i.e., concurrence is plotted vs gt for (i) κ/g = 0.05

(solid line) (ii) κ/g = 0.1 (dashed line).

2.4 Summary

In this chapter we have discussed the Jaynes-Cummings model which consists of a two-

level atom interacting with a single mode cavity field. This is an exactly solvable model.

We have considered resonant interaction between the atom and the cavity field. We saw

that the Jaynes-Cummings interaction Hamiltonian takes a simple form in the rotating

wave approximation. We then discussed the time evolution of atom-field states evolving

under the Jaynes-Cummings interaction. Next we discussed dissipative dynamics of cavity

field. Here we considered only cavity dissipation as the lifetime of two-level atoms (we

are considering two-level Rydberg atoms) is much longer than the atom-field interaction

time. Basically, the dynamical equation of the atom-field density state evolves under (i)

the simple atom-field interaction, and (ii) the field-reservoir interaction. We solved the

equations of motion under the secular approximation by using the fact that g ≫ κ.

We investigated the various types of entanglement which origines from the Jaynes-

Cummings interaction both in ideal and dissipative systems. We showed how the atom-

cavity, atom-atom, and cavity-cavity entanglement can be generated in atom-photon in-

teractions. We studied quantitatively the atom-cavity, atom-atom, and cavity-cavity en-

tanglement as functions of the Rabi angle gt in the ideal situation and also in presence of

cavity dissipation. We have used the entanglement measure, concurrence [22, 23] to quan-
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tify the entanglement. We observed that the cavity dissipation kills the entanglement in

all cases as we increase the atom-field interaction time. In this chapter we have set up the

framework of generating and quantifying various types of entanglement in atom-photon

interactions governed by the Jaynes-Cummings model, which will be applied in the sub-

sequent chapters for performing different studies such as the generation of entanglement

in realistic devices, investigating characteristic properties of entanglement, etc.



Chapter 3

Quantum entanglement in the micromaser

3.1 Introduction

The generation of quantum entanglement in atomic systems is being vigorously pursued in

recent years. The primary motivation for this upsurge of interest is to test the applicability

of the ongoing conceptual developments in quantum information theory and through them

the implementation of current quantum communication and computation protocols [4].

Several schemes have been proposed recently to engineer the entanglement of two [48]

or more atoms [49, 50]. Many of these proposals are for generating entanglement in a

probabilistic manner. Since a large number of these proposals rely on the trapping or slow

passage of cold atoms through optical cavities [6], the efficient control of cavity leakage

and atomic dissipation is a major concern [51]. As we have seen in chapter 2, decoherence

effects are significant even in the time O(1/g) needed for perceptible entanglement. The

micromaser, is appreciated as a practical device for processing quantum information,

where such dissipative effects can be experimentally monitored.

The one-atom micromaser [29, 30, 31], in which at best one atom at a time is allowed

to interact with the radiation field high Q microwave cavity maintained at sub-Kelvin

temperatures, has been widely examined as this is now capable of answering a variety

of fundemental questions [52]. Moreover, it is now hoped that the radiation field in

the cavity may evolve to a Fock state. It is well known that this can be very sensitive

to noisy mechanisms, however small, accompanying the coherent atom-field interaction.

The decoherece due to atom-reservoir interaction does not affect the individual single-

atom dynamics since we consider Rydberg atoms whose lifetime in much longer compared

42
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to the interaction time of the atom and field inside the micromaser.

To find out how these noise creep into the evolution of the cavity radiation field while

interacting with a single atom (represented by its two Rydberg levels with transition fre-

quency ω0 in resonance with the cavity eigenmode) with a random time duration between

their successive arrivals at the cavity, let us examine the micromaser mechanism starting

from the very first atom that enters the cavity. The radiation field of frequency ω inside

the cavity is in equilibrium at its temperature T (K) and has average thermal photons

n̄th with which the very first atom interacts for a duration τ , fixed for every atom. The

next atom sees the radiation field left in the cavity after the interaction with previous

atom. The cavity field evolves under its own dynamics for the duration tcav between two

successive atoms. The process repeats itself after every t̄c seconds where t̄c = 1/R with

R being the number of atoms passing through the cavity per second. Thus we have a

repetation time tc = τ + tcav. t̄c is the average of tc with respect to the distribution in

time of the incoming atoms which we consider to be Poissonian (random) such as in the

experimental setup [29, 31]. From this mechanism, we find that the cavity radiation field

is in interaction with its reservoir all the time.

Naturally, the dynamics will carry the signatures of the reservoir to the steady-state

situation of the cavity field. In an earlier work [30], the effect of the reservoir was leglected

during τ . Although the setting is to have τ ≪ tcav as in the experiments [29, 31], the

duration τ can itself be long enough to make the influence of the reservoir crucial. We

describe below a micromaser dynamics [33] that includes the influence of the cavity reser-

voir during the crucial atom-field interaction. The evolution of the cavity field when it is

empty of atoms is, of course, included in the dynamics.

3.1.1 The experimental scenario

Before discussing the dynamics, let us briefly describe of the experimental scenario which

we model in our analysis. A two-level atom initially in its upper excited state |e〉 traverses

a high-Q single mode cavity. The cavity is in a steady state built up by the dynamics

described in the previous section. The emerging single-atom wavefunction is a super-

position of the upper |e〉 and lower |g〉 state and it leaves an imprint on the photonic
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wavefunction in the cavity. During this process, cavity leakage takes place, and is taken

into account. Next, a second experimental atom, prepared also in state |e〉, encounters

the cavity photons whose state has been now modified by the passage of the first atom.

This atom too emerges in a superposition with either of the above two outcomes possible.

Although there is no direct interaction between the atoms, correlations develop between

their states mediated by the cavity photons [20, 53]. The effects of dissipation on these

correlations can be computed [20]. After emanating from the cavity, each of the atoms

encounters a π/2 pulse through an electromagnetic field whose phase may be varied for

different atoms. The effect of the π/2 pulse is to transform the state 1√
2
(|e〉 + |g〉) to |g〉

and the state 1√
2
(|e〉 − |g〉) to |e〉. These resultant states may now be detected, and the

corresponding outcomes used to signify the states emanating from the cavity.

3.2 Micromaser dynamics

The Hamiltonian for the resonant interaction between the single atom and the single mode

of the radiation field described by the Jaynes-Cummings model (as in Eq.(2.11) is

HI = g(σ+a + σ−a†). (3.1)

The equation of motion of the composite atom-field density state ρ due to the interaction

in Eq.(3.1) is

ρ̇|atom-field = −i[HI , ρ]. (3.2)

The resevoir-induced interactions can be effectively represented by the well-known master

equation [46, 47] (see Appendix 1 on page 114). For the field-reservoir coupling, after

tracing over the reservoir variables, we have

ρ̇|field-reservoir = −κ(1 + n̄th)(a
†aρ− 2aρa† + ρa†a)

− κn̄th(aa
†ρ− 2a†ρa + ρaa†), (3.3)

where κ = ω
2Q

is the cavity bandwidth and n̄th is the average photon number representing

the reservoir. The cavity photon lifetime tp is related to the bandwidth by tp = 1
2κ

. Hence
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the equation of motion of ρ due to the above interactions of the system in Eqs.(3.2) and

(3.3), is

ρ̇ = ρ̇|atom-field + ρ̇|field-reservoir. (3.4)

This governs the equation of motion during τ while the dynamics is solely represented by

Eq.(3.3) during tcav. Hence we divide the process during the repetition time tc into two

regimes, i.e., (i)atom-field interaction duration, and (ii)cavity empty of atoms. We now

solve Eq.(3.4) to evaluate the change in ρ during τ . It has been found convenient to work

in a picture [54] represented by the so-called dressed state [27] (Eq.(2.32) and Eq.(2.33))

These are

|+, n〉 =
1√
2
[|e, n〉 + |g, n+ 1〉], (3.5)

and

|−, n〉 =
1√
2
[−|e, n〉 + |g, n+ 1〉]. (3.6)

The equation of motion in Eq.(3.4), written in the dressed state basis, reduces to four cou-

pled equations governing the time evolution of 〈+, n|ρ̇|+, n〉, 〈−, n|ρ̇|−, n〉, 〈+, n|ρ̇|−, n〉
and 〈−, n|ρ̇|+, n〉. The coupled equations have been solved using the experimental condi-

tion, κ≪ g, known as the secular approximation. A time derevative of the density matrix

in photon number representation, that is ρn,n = 〈n|ρ|n〉, has been obtained after tracing

over the atomic states. The resulting equation of motion is

Ṗn|gain-cum-loss = XnPn−1 + (Yn − R)Pn + ZnPn+1, (3.7)

where,

Xn = R sin2(g
√
nτ) exp{−(2n− 1)κτ} (3.8)

Yn =
1

2
R
(

{2 cos2[g
√
n + 1τ ] − 1

2
(2n+ 1)

+F1(n− 1)} exp{−(2n+ 1)κτ} + [
1

2
(2n+ 1)

−F2(n− 1)] exp{−(2n− 1)κτ}
)

,
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and

Zn =
1

2
R
(

[
1

2
(2n+ 3) + F2(n)] exp{−(2n+ 1)κτ}

−[
1

2
(2n + 3) + F1(n)] exp{−(2n+ 3)κτ}

)

.

The functions Fi are

Fi(n) =
κ/4g

(
√
n + 2 −

√
n + 1)2

[

−[2n + 3 + 2
√

(n + 1)(n+ 2)](
√
n + 2 −

√
n + 1) sin (2g

√
mτ)

]

+
κ/4g

(
√
n + 2 +

√
n+ 1)2

[

∓[2n + 3 − 2
√

(n+ 1)(n+ 2)](
√
n+ 2 +

√
n + 1) sin (2g

√
mτ)

]

(3.9)

where m = n + 2 and n + 1 for i = 1 and 2, respectively, with the upper sign for i = 1.

The time evolution of Pn,n during tcav, cavity empty of atom, can be easily obtained by

writing Eq.(3.3) in |n〉 basis :

Ṗn|dissipation = AnPn−1 +BnPn + CnPn+1, (3.10)

where An = 2nκn̄th, Bn = −2κ(n + n̄th + 2nn̄th) and Cn = 2(n+ 1)(n̄th + 1)κ.

3.2.1 Steady state photon distribution

We now derive Pn,n in a steady-state in which gain and loss in Eqs. (3.7) and (3.10)

respectively, compensate each other. So, we can write

Ṗn = Ṗn|gain-cum-loss + Ṗn|dissipation

= 0. (3.11)

This gives a tri-diagonal equation

−f (n)
3 Pn−1 + f

(n)
2 Pn + f

(n)
1 Pn+1 = 0. (3.12)

We define

vn =
Pn
Pn−1

. (3.13)
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Eq.(3.12) then gives vn in the form of a continued fraction.

vm = f
(m)
3 /(f

(m)
2 + f

(m)
1 vm+1). (3.14)

We obtain all the Pns from

Pn = P0

n
∏

m=1

vm (3.15)

P0 is obtained from the normalization
∑∞
n=0 Pn = 1. The above distribution function de-

scribes the micromaser cavity in a steady state on which the experimental atoms impinge

one after another.

3.3 The generation of atomic entanglement

The formation of atom-photon entanglement and the subsequent generation of correlations

between spatially separated atoms has been shown using the micromaser [9]. Englert et

al [55] have also shown using a non-separability criterion, the generation of entanglement

between two atoms that pass through a one-atom micromaser one after the other, in

immediate succession. The nonlocal correlations developed in this fashion between two or

more atoms can be used to test the violation of Bell-type inequalities [8, 20, 53, 55]. For

Rydberg atoms tuned with microwave frequencies, atomic damping is negligible, and it

does not crucially affect the individual single atom dynamics. However, cavity dissipation

does build up over the passage of a number of atoms through the micromaser, and is

revealed in the photonic statistics of the steady-state cavity field, as was discussed in the

previous section. The entanglement between a pair of atoms pumped at the same time

through a micromaser has been analysed in Ref. [8]. It is rather difficult to practically

realize such a set-up though. The genuine one-atom micromaser, on the other hand, can

be operated over a reasonably large region of parameter space, and is thus a feasible device

[31] for generating entanglement between two or more atoms.

3.3.1 The entanglement of formation of two successive atoms

Since the joint state of the two atoms emanating from the cavity is not a pure state, we

quantify the entanglement using the well known measure appropriate for mixed states, i.e.,
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the entanglement of formation [22, 23]. We compute the atomic entanglement generated

between two experimental atoms that pass successively through the micromaser cavity.

The tripartite joint state of the cavity and the two atoms is obtained by summing over

all n. The reduced density state of the two atoms after passing through the cavity field

after tracing over the field (we display the non-vanishing terms only) is given by

ρ(t)A1A2
= trf(ρ(t)A1A2f)

= β1|e1e2〉〈e1e2| + β2|e1g2〉〈e1g2|
+β3|g1e2〉〈g1e2| + β4|e1g2〉〈g1e2|
+β4|g1e2〉〈e1g2| + β5|g1g2〉〈g1g2|, (3.16)

where the βi are given by

β1 =
∑

n

P ss
n cos4 (

√
n + 1gt),

β2 =
∑

n

P ss
n cos2 (

√
n + 1gt) sin2 (

√
n + 1gt),

β3 =
∑

n

P ss
n cos2 (

√
n + 2gt) sin2 (

√
n + 1gt),

β4 =
∑

n

P ss
n sin2 (

√
n + 1gt) cos (

√
n+ 1gt) cos (

√
n + 2gt),

β5 =
∑

n

P ss
n sin2 (

√
n + 1gt) sin2 (

√
n + 2gt). (3.17)

The corresponding reduced density matrix is obtained to be

ρ(t)A1A2
=













β5 0 0 0

0 β3 β4 0

0 β4 β2 0

0 0 0 β1













(3.18)

in the basis of |g1g2 >, |g1e2 >, |e1g2 > and |e1e2 > states.

We compute numerically the values of EF (ρa) [22, 23] for a range of micromaser

parameters. We plot the entanglement of formation EF of the two-atom state versus

the micromaser pump parameter D = gt
√
N for different values of the average thermal

photons number nth for fixed κ/g = 0.000001 in Figure 3.1. We also plot EF vs κ/g

for different values of the micromaser pump parameter D in Figure 3.2. The steady-

state photon statistics of the cavity field [20, 33] depending on the cavity parameters are

reflected in the entanglement properties of the emerging atoms.
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Figure 3.1: Atom-atom entanglement i.e., EF is plotted vs micromaser pump parameter

D = gt
√
N for different values of nth. κ/g = 0.000001, N = 1.
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Figure 3.2: Atom-atom entanglement i.e., EF is plotted vs κ/g for different values of the

micromaser pump parameter D = gt
√
N . nth = 0.01, N = 1.
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Figure 3.3: Variance of the photon number distribution of the cavity (V) is plotted vs

micromaser pump parameter D = gt
√
N . κ/g = 0.001 and nth = 0.01, N = 1.

3.3.2 Information transfer in the micromaser

Information is transferred from the cavity to the atoms in order to build up entanglement.

The amount of information transferred is expected to depend on the available information

content of the cavity. The variance of the photon number distribution of the cavity is

an indicator of the information content of the cavity field, and we compute the variance

(Figure 3.3) over a range of atom-photon interaction times. The total information inside

the cavity is however measured by its Shannon entropy [56] which has contributions from

higher moments of the photon statistics as well. We therefore calculate the Shannon

entropy of the photon distribution function in the cavity before and after the passage of

the two atoms. The role of photon statistics on information transfer is further revealed

by the computation of the Shannon entropy which for the cavity in a steady state is

S(ρ
(ss)
f ) = −

∞
∑

n=1

P (ss)
n logP (ss)

n (3.19)

using the expression for the steady-state photon number distribution with the normaly-

sation
∑

n Pn = 1 (See Eq.(3.2.1)). It is straightforward to derive the expression for the



Chapter 3. Quantum entanglement in the micromaser 51

0 2 4 6 8 10 12 14 16 18 20
gt

-0.2

-0.1

0

0.1

0.2

Figure 3.4: Atom-atom entanglement i.e., EF (solid line) and difference of the Shannon

entropies i.e. (Sρ
(2)
f ) − S(ρ

(ss)
f )/10 (dashed line) are plotted versus micromaser pump

parameter D = gt
√
N . κ/g = 0.001 and nth = 0.01, N = 1.

density operator of the cavity field after passage of the two experimental atoms [20]. We

denote this cavity state as ρ
(2)
f , given by

ρ
(2)
f =

∑

n

P ss
n cos4 (

√
n + 1gt)|n〉〈n| +

∑

n

P ss
n cos2 (

√
n+ 1gt) sin2 (

√
n+ 1gt)|n+ 1〉〈n+ 1|

+
∑

n

P ss
n cos2 (

√
n + 2gt) sin2 (

√
n + 1gt)|n+ 1〉〈n+ 1|

+
∑

n

P ss
n sin2 (

√
n + 1gt) sin2 (

√
n + 2gt)|n+ 2〉〈n+ 2|. (3.20)

We then compute its Shannon entropy given by

S(ρ
(2)
f ) = −

∞
∑

n=1

P (2)
n logP (2)

n (3.21)

as well, through the corresponding photon number distribution P (2)
n = 〈n|ρ(2)

f |n〉. We also

calculate the difference of these Shannon entropies i.e., S(ρ
(2)
f )−S(ρ

(ss)
f ). We plot EF and

(Sρ
(2)
f ) − S(ρ

(ss)
f ) versus D = gt

√
N for κ/g = 0.001 and nth = 0.01 in Figure 3.4.
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3.4 Summary

In this chapter we have described the one-atom micromaser and its dynamics. We obtained

the steady-sate micromaser field which evolves under the field-reservoir coupling. We show

here that entanglement between two atoms can be generated in the one-atom micromaser

device. We have proposed a scheme to measure the entanglement generated between two

successive atoms that stream through a real one-atom micromaser in such a manner that

their flights through the cavity do not overlap. There is always a time gap between one

atom leaving the cavity and the next atom entering the cavity. We show that successive

atoms that emerge out of the cavity are entangled. This scheme does not require the

spatial overlap between the two atoms at any stage. In the theory for the micromaser

used by us [33], the interaction of the cavity with its reservoir is taken into account at

all times. We indeed compute the effect of photon leakage on the entanglement measure.

Such a model was earlier used by us [20] to show the violation of a Bell-type inequality

between two spatially non-overlapping atoms correlated via atom-photon interactions.

The generation of nonlocal correlations between the two atomic states emerging from the

cavity can in general be understood using the Horodecki theorem [57].

We have studied the entanglement of formation between two atoms as a function of

the various micromaser parameters. We have plotted EF between two atoms versus the

Rabi angle gt for different values of average thermal photons nth keeping κ/g fixed. We

have also plotted EF as a function of cavity dissipation κ/g. In the first case entangle-

ment decreases with increasing average thermal photon number provinding an example

of environment-induced entanglement that we will study in detail in chapter 6. In the

second case we see two-atom entanglement increases with increasing κ/g, the explanation

for which will also be apparent in chapter 6. Next we have calculated the initial Shan-

non entropy of the steady-state micromaser field and the final Shannon entropy of the

steady-state micromaser field after the passage of the two atoms. We have compared EF

with the difference of the Shannon entropies versus as a function of the Rabi angle gt.

The difference in the Shannon entropies is seen to exhibit some correspondence with the

entanglement of formation of the atoms for certain values of the atom-photon interaction

time. Thus this scheme provides a concrete quantitative example of information transfer
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between the microwave cavity and the two atoms in a realistic set-up. The micromaser

is an experimentally operational real physical device where abstract quantum informa-

tion theoretic concepts can be revealed in the presence of dissipative interactions. The

quantitative study of information transfer in the micromaser calls for the future study

of channel capacity [21] of the entangling atoms as functions of the various micromaser

parameters.



Chapter 4

Curious features of entanglement: a quantitative

study

4.1 Introduction

We have seen that entanglement between separate quantum systems is a distinctive fea-

ture of quantum mechanics [1, 3]. Quantum entanglement is moreover endowed with

certain curious features. Unlike classical correlations, quantum entanglement cannot be

freely shared among many quantum systems. It has been observed that a quantum system

being entangled with another one limits its possible entanglement with a third system.

This has been dubbed the “monogamous nature of entanglement” which was first pro-

posed by Bennett [34] :“.....you can’t become entangled simply by talking on the telephone.

Entanglement is monogamous-the more entangled Bob is with the Alice, the less entan-

gled he can be .......”. For example, if a pair of qubits A and B have a perfect quantum

correlation, namely, if they are in a maximally entangled state Ψ− = (|01〉 − |10〉)/
√

2,

then the system A cannot be entangled with a third system C. This is because if A

were entangled with C, then the pair AB would also be entangled with C, and would

therefore have a mixed-state density matrix (the reduced density state ρAB after taking

trace over C from a pure tripartite entangled state ρABC always is a mixed density state

i.e. ρAB = TrC(ρABC) would be a mixed density state), whereas the singlet state is pure.

In general, there is trade-off between the amount of entanglement between qubits A and

B and the same qubit A and C. This property is purely quantum.

In the classical world if A and B bits are perfectly correlated, then there is no con-

54
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straints in the correlation between bits A and C. The trade-off is described by the

Coffman-Kundu-Wootters (CKW) monogamy inequality [36] C2
AB+C2

AC ≤ C2
(AB)C , where

CAB is the concurrence [22, 23] between A and B, CAC is the concurrence between A and

C, and C(AB)C is the concurrence between AB and C. There was a conjecture [36] that the

above inequality can be extended to n-qubits which has been proved recently [58]. This

indicates that there is a limitation in the distribution of entanglement, and several efforts

have been devoted to capture this unique property of “monogamy of quantum entangle-

ment” in a quantitative way for tripartite and multipartite systems ([36],[58]-[65]). In the

present chapter we investigate the “monogamy of quantum entanglement” for tripartite

systems.

Another distinctive property of quantum entanglement for multipartite systems is the

possibility of “entanglement swapping” between two or more pairs of qubits. Using this

property, two parties that never interacted in their history can be entangled [66, 67].

Usually quantum entanglement originates in certain direct interactions between two par-

ticles placed closed together. But it is possible to entangle two particles which have

never interacted in the past as we saw in the case of two successive atoms in the mi-

cromaser in chapter 3, and also via entanglement swapping [68, 69]. There may indeed

exist a deeper connection between the characteristics of “monogamy” and entanglement

“swapping” since the features of the distribution and transfer of quantum information is

essentially reflected in the both these properties. We show these interesting character-

istics of entanglement in details for given systems disscussed below. In this chapter we

will present these features of entanglement i.e. “monogamy of quantum entanglement”

and “entanglement swapping” both in ideal and disssipative cases with three qubits (two

cavities and a two-level atom and two two-level atom and a single cavity) and four qubits

(two cavities and two two-level atoms) respectively.

In the next section (4.2) we first consider a tripartite pure system (two ideal cavities

and one atom) and study the features of “monogamy” exhibited between the atom-cavity

and the cavity-cavity entanglements. In section 4.3 we consider another system of two

two-level maximally entangled atoms i.e. an EPR pair [6] and a single-mode cavity.

We then consider the passage of one of two maximally entangled atoms through the

vacuum cavity and study the features of “monogamy” exhibited between the atom-atom
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and the atom-cavity entanglements. In particular, we demonstrate the applicability of

the Coffman-Kundu-Wootters (CKW) [36] “monogamy” inequality to this system. We

consider in section 4.2.2 a realistic cavity with photon leakage, and repeat the above

analysis keeping in mind the recently conjectured validity of the CKW inequality extended

to mixed states [58]. We find that cavity dissipation could lead to interesting possibilities,

such as the enhancement of the entanglement between the atom and the cavity mode that

it interacts with, a feature that could be understood by the “monogamous” behaviour of

entanglement in section 4.2.2. Finally in section 4.4 we consider a four-qubit system

(two cavities and two atoms) where our goal is to observe entanglement swapping, or the

transfer of entanglement from the initially entangled two cavities to the two atoms. Here

again, we first perform the analysis with ideal cavities, and then consider the effects of

cavity leakage on entanglement swapping.

4.2 Monogamy of entanglement in a system of two cavities and

a single atom

4.2.1 Pure state of three qubits

We first disscuss how a system of two maximally entangled single-mode cavities (C1 and

C2) which are empty initially is prepared. This system of two maximally entangled single-

mode cavities is called a teleportation machine [70, 71, 72]. We send the atom B1 prepared

in the excited state |e〉 through two separated vaccum cavities C1 and C2 successively, and

we have to take different passage times for the passage of the atom through the cavities

(Figure 4.1).

The initial joint state of C1, C2 and B1 is

|Ψ〉C1C2B1
= |01, 02, e〉. (4.1)

We assume the resonant interaction between the two-level atom and cavity mode fre-

quency. The interaction Hamiltonian in the rotating frame approximation for the atom-

cavity system,as discussed in chapter 2, [Eq.(2.11)], is

HI = g(σ+a + σ−a†), (4.2)
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Figure 4.1: The passage of atom B1 through the cavities C1 ang C2 successively with

different interaction times such as gt = π/4 and gt = π/2 respectively.

and the dynamics of the atom-photon interaction is governed by the equation

ρ̇ = −i[HI , ρ]. (4.3)

First we send the atom B1 through the cavity C1. The resulting atom-cavity state at

time t is

|Ψ〉C1C2c = (cos gt|01e〉 + sin gt|11g〉) ⊗ 02. (4.4)

If we take gt = π/4, the resulting atom-cavity state becomes

|Ψ〉C1C2c =
1√
2
(|01e〉 + |11g〉) ⊗ 02. (4.5)

After emerging from the cavity C1 the atom B1 passes through the cavity C2. The

resulting atom-cavity state at time t is

|Ψ〉C1C2B1
=

1√
2
(cos gt|0102e〉 + sin gt|0112g〉 + |1102g〉). (4.6)

If we take gt = π/2 the resulting atom-cavity state becomes

|Ψ〉C1C2c =
1√
2
(|0112〉 + |1102〉) ⊗ |g〉. (4.7)

Thus, we get two ideal cavities which are maximally entangled (Figure 4.2) by sending

a single circular Rydberg atom prepared in the exited state through two identical and

initially empty ideal cavities (C1 and C2) [70, 71, 72].
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Figure 4.3: A two-level Rydberg atom prepared in the ground state is passing throuh the

one of the maximally entangled cavities C1

We now consider this maximally entangled bipartite system of two cavities having the

state

|Ψ〉C1C2
=

1√
2
(|0112〉 + |1102〉), (4.8)

as the initial state for our purpose of investigating the monogamy of entanglement. Let

another two-level Rydberg atom A1 prepared in the ground state |g〉 pass through the

cavity C1 (see Figure 4.3). The initial atom-field system is

|Ψ(t = 0)〉C1C2A1
=

1√
2
(|0112〉 + |1102〉) ⊗ |g1〉. (4.9)

After a time t the joint atom-field system has the state given by

|Ψ(t)〉C1C2A1
=

1√
2
(|0112g1〉 + cos gt|1102g1〉

− sin gt|0102e1〉) (4.10)

The corresponding density state is

ρ(t)C1C2A1
= |Ψ(t)C1C2A1

〉〈Ψ(t)C1C2A1
|
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=
1

2
|0112g1〉〈0112g1|

+
cos2 gt

2
|1102g1〉〈1102g1|

+
sin2 gt

2
|0102e1〉〈0102e1|

+
cos gt

2
|0112g1〉〈1102g1|

+
cos gt

2
|1102g1〉〈0112g1|

−cosgt sin gt
2

|1102g1〉〈0102e1|

−cosgt sin gt
2

|0102e1〉〈1102g1|

−sin gt

2
|0102e1〉〈0112g1|

−sin gt

2
|0112g1〉〈0102e1|. (4.11)

The reduced density states of the pairs C1C2, C2A1, C1A1 are obtained by taking the

appropriate traces and are given by

ρ(t)C1C2
= TrA1

(ρ(t)C1C2A1
),

=
1

2
|0112〉〈0112| +

cos2 gt

2
|1102〉〈1102|

+
sin2 gt

2
|0102〉〈0102| +

cos gt

2
|0112〉〈1102|

+
cos gt

2
|1102〉〈0112|. (4.12)

ρ(t)C2A1
= TrC1

(ρ(t)C1C2A1
),

=
1

2
|12g1〉〈12g1| +

cos2 gt

2
|02g1〉〈02g1|

+
sin2 gt

2
|02e1〉〈02e1| −

sin gt

2
|12g1〉〈02e1|

− sin gt

2
|02e1〉〈12g1|. (4.13)

ρ(t)C1A1
= TrC2

(ρ(t)C1C2A1
),

=
1

2
|01g1〉〈01g1| +

cos2 gt

2
|11g1〉〈11g1|
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+
sin2 gt

2
|01e1〉〈01e1| −

sin gt cos gt

2
|11g1〉〈01e1|

− sin gt cos gt

2
|01e1〉〈11g1|. (4.14)

The reduced density matrix of the pair of atoms C1C2 is thus given by

ρ(t)C1C2
=















sin2 gt
2

0 0 0

0 1
2

cos gt
2

0

0 cos gt
2

cos2 gt
2

0

0 0 0 0















(4.15)

in the basis of |0102 >, |0112 >, |1102 >, and |1112 > states. Similarly, the reduced density

matrix of the pair of atoms C2A1 is given by

ρ(t)C2A1
=















cos2 gt
2

0 0 0

0 sin2 gt
2

− sin gt
2

0

0 − sin gt
2

1
2

0

0 0 0 0















(4.16)

in the basis of |02g1 >, |02e1 >, |12g1 >, and |12e1 > states. The reduced density matrix

of the pair of atoms C1A1 is given by

ρ(t)C1A1
=















1
2

0 0 0

0 sin2 gt
2

− sin gt cos gt
2

0

0 − sin gt cos gt
2

cos2 gt
2

0

0 0 0 0















(4.17)

in the basis of |01g1 >, |01e1 >, |11g1 >, and |11e1 > states.

We now compute the mixed-state bipartite entanglement measure (concurrence) [22,

23] for different pairs. These are given by

C (ρ(t)C1C2
) = | cos gt|, (4.18)

C (ρ(t)C2A1
) = | sin gt|, (4.19)

C (ρ(t)C1A1
) = | cos gt sin gt| (4.20)

and are plotted in Figure 4.4 for varying Rabi angle. The monogamous nature of entan-

glement between the pairs C1C2 and C2A1, is clearly reflected.
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plotted with respect to the Rabi angle gt.

The CKW inequality [36] for the tripartite pure state ρ(t)C2C1A1
is given by C 2

C2C1
+

C 2
C2A1

≤ C 2
C2(C1A1). or C 2

C2C1
+ C 2

C2A1
≤ 4detρ(t)C2

(since CC2(C1A1) = 2
√

detρ(t)C2
). So

the CKW inequality reduces to cos2 gt + sin2 gt = 1 in this case since detρ(t)C2
= 1/4.

More interesting is the case if we consider the following pure state of C2C1A1:

|ψ〉C2C1A1
= α|1201g2〉 + β|0211g1〉 + γ|0201e1〉, (4.21)

where the three positions in the kets refer to qubits C2, C1, and A1 in that order. Then

C 2
C2C1

+ C 2
C2A1

= C 2
C2(C1A1), i.e., the CKW inequality is saturated.

4.2.2 Effects of cavity dissipation on entanglement

Let us now investigate the above case in presence of cavity dissipation. The dynamics of

the flight of the atom can be represented by the equation

ρ̇ = ρ̇|atom-field + ρ̇|field-reservoir, (4.22)

where the strength of the couplings are given by the parameters κ (the cavity leakage

constant) and g (the atom-field interaction constant). At temperature T = 0K the

average thermal photon number is zero, and hence one has [47]

ρ̇|field-reservoir = −κ(a†aρ− 2aρa† + ρa†a). (4.23)
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Since g ≫ κ, we again make the secular approximation [27] (see chapter 2) while solving

the complete evolution equation by combining Eqs.(4.3) and (4.25) in order to get the

density elements of ρ(t)C1C2A1
. We further assume (that is justified when the cavity is

close to 0K) that the probability of getting two or more photons inside the cavities is

zero, or in other words, a cavity always remains in the two level state comprising of |0 >
and |1 >. The tripartite (mixed) state is then obtained to be

ρ(t)C1C2A1
= α1|0112g1〉〈0112g1|
+α2|1102g1〉〈1102g1|
+α3|0102e1〉〈0102e1|
+α4|0112g1〉〈1102g1|
+α4|1102g1〉〈0112g1|
+α5|1102g1〉〈0102e1|
−α5|0102e1〉〈1102g1|
+α6|0102e1〉〈0112g1|
−α6|0112g1〉〈0102e1|, (4.24)

where the αi are given by

α1 =
(

1 − e−κ1t

2

)

e−2κ2t,

α2 = cos2 gte−κ1t
(

1 − e−2κ2t

2

)

,

α3 = sin2 gte−κ1t
(

1 − e−2κ2t

2

)

,

α4 =
cos gte−

κ1t
2 e−κ2t

2
,

α5 = i sin gt cos gte−κ1t
(

1 − e−2κ2t

2

)

,

α6 = i
(

e−
κ1t

2 sin gt

2
− κ1e

−κ1t

2 cos gt

4g
+
κ1

4g

)

e−κ2t,

and κ1 and κ2 are the leakage constants for cavity C1 and C2 respectively. The reduced

density states of the pairs C1C2, C2A1, C1A1 are thus given by

ρ(t)C1C2
= TrA1

(ρC1C2A1
),
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= α1|0112〉〈0112| + α2|1102〉〈1102|
+ α3|0102〉〈0102| + α4|0112〉〈1102|
+ α4|1102〉〈0112|. (4.25)

ρ(t)C2A1
= TrC1

(ρC1C2A1
),

= α1|12g1〉〈12g1| + α2|02g1〉〈02g1|
+ α3|02e1〉〈02e1| − α6|12g1〉〈02e1|
+ α6|02e1〉〈12g1|. (4.26)

ρ(t)C1A1
= TrC2

(ρC1C2A1
),

= α1|01g1〉〈01g1| + α2|11g1〉〈11g1|
+ α3|01e1〉〈01e1| + α5|11g1〉〈01e1|
− α5|01e1〉〈11g1|. (4.27)

The reduced density matrix of the pair of cavities C1C2 can thus be written as

ρ(t)C1C2
=













α3 0 0 0

0 α1 α4 0

0 α4 α2 0

0 0 0 0













(4.28)

in the basis of |0102 >, |0112 >, |1102 >, and |1112 > states. Similarly,

ρ(t)C2A1
=













α2 0 0 0

0 α3 −α6 0

0 α6 α1 0

0 0 0 0













(4.29)

in the basis of |02g1 >, |02e1 >, |12g1 >, and |12e1 > states, and

ρ(t)C1A1
=













α1 0 0 0

0 α3 −α5 0

0 α5 α2 0

0 0 0 0













(4.30)

in the basis of |01g1 >, |01e1 >, |11g1 >, and |11e1 > states.
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Figure 4.5: C (ρ(t)C1C2
) (solid line), C (ρ(t)C2A1

), (dotted line), C (ρ(t)C1A1
) (broken line)

plotted with respect to the Rabi angle gt. κ1

g
= κ2

g
= 0.1.

One can then obtain the respective concurrences. These, namely, C(ρ(t)C1C2
), C(ρ(t)C2A1

),

and C(ρ(t)C1A1
) are given by

C(ρ(t)C1C2
) = | cos gte−

κ1t

2 e−κ2t| (4.31)

C(ρ(t)C2A1
) =

∣

∣

∣

∣

(

e−
κ1t
2 sin gt− κ1e

−κ1t
2 cos gt

2g
+
κ1

2g

)

e−κ2t
∣

∣

∣

∣

(4.32)

C(ρ(t)C1A1
) =

∣

∣

∣

∣

2 cos gt sin gte−κ1t
(

1 − e−2κ2t

2

)∣

∣

∣

∣

(4.33)

These concurrences are plotted with respect to the Rabi angle gt in Figure 4.5. As

expected, dissipation reduces the respective concurrences. However, the “monogamous”

character, or the ‘complementarity’ between C (ρ(t)C1C2
) and C (ρ(t)C2A1

) is maintained

even with cavity leakage.

To verify the CKW inequality for the mixed state ρ(t)C1C2A1
, one has to average

C (ρ(t)C2(C1A1)) over all pure state decompositions [58]. We however, adopt an utilitarian

point of view, and for small κ take C (ρ(t)C2(C1A1)) ≈ 2
√

detρC2
. Note that this result

holds exactly for a pure state [36]. Nevertheless, for a small value of κ and for a bipartite

photon field, one stays very close to a pure state. In Figure 4.6 we plot the left and the

right hand sides (C 2
C2C1

+ C 2
C2A1

and C 2
C2(C1A1), respectively) of the corresponding CKW

inequality and observe that it always holds under the above approximation. An interesting
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Figure 4.6: C 2
C2C1

+ C 2
C2A1

(solid line), C 2
C2(C1A1) (dotted line) plotted with respect to the

Rabi angle gt.
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Figure 4.7: C (ρ(t)A1C1
) (solid line) for gt = π/4, C (ρ(t)A1C1

) (broken line) for gt = 3π/4,

C (ρ(t)A1C1
), (dotted line) for gt = 5π/4 plotted with respect to log(κ/g), where κ/g =

κ1/g = κ2/g.
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Figure 4.8: Two maximally entangled atoms.

feature of the entanglement obtained between the atom A1 and the cavity C1 through

which it interacts directly is displayed in Figure 4.7 where C (ρ(t)A1C1
) is plotted versus

the dissipation parameter κ. Note that the concurrence increases for increasing cavity

loss. This happens because the cavity leakage reduces the intial entanglement between

C1 and C2, and hence makes room for the subsequent entanglement between C1 and A1

to form. The dissipative mechanism is thus a striking confirmation of the “monogamous”

character of entanglement. The role of the dissipative environment in creating desired

forms of entanglement has been revealed earlier in the literature [40, 41], and forms an

important part of this thesis, which will be studied in details in chapter 6. The present

case can be also viewed as a further example of this kind.

4.3 Monogamy of entanglement in a system of two maximally

entangled atoms and a single cavity

4.3.1 Pure state of three qubits

In this section we discuss another example where we see the monogamous behaviour of

entanglement. We consider the initial state of two maximally entangled atoms A1 and A2

(Figure 4.8) (that can be generated by passing the atoms one after the other through a

vacuum cavity with suitably chosen different interaction times, in a manner similar to the

generation of two maximally entangled cavities discussed in the previous section), and a

single cavity C1. Now consider the atom A1 to pass through the cavity C1. The atom A2

remains undisturbed (See Figure 4.9). The initial joint state of A1, A2 and C1 is

|Ψ〉A1A2C1
=

1√
2
(|e1g2〉 + |g1e2〉) ⊗ |01〉 (4.34)
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Figure 4.9: One of the maximally entangled atoms A1 is passing through the cavity C1 .

In a similar fashion as discussed in section 4.3.1 we get the evolved state at any time t to

be

|Ψ(t)〉A1A2C1
=

1√
2
(cos gt|e1g201〉 + sin gt|g1g211〉

+|g1e201〉). (4.35)

The corresponding density state is

ρ(t)A1A2C1
= |Ψ(t)A1A2C1

〉〈Ψ(t)A1A2C1
|

=
cos2 gt

2
|e1g201〉〈e1g201|

+
sin2 gt

2
|g1g211〉〈g1g211|

+
1

2
|g1e201〉〈g1e201|

+
cos gt

2
|e1g201〉〈g1e201|

+
cos gt

2
|g1e201〉〈e1g201|

−sin gt

2
|g1g211〉〈g1e201|

−sin gt

2
|g1e201〉〈g1g211|

+
cos gt sin gt

2
|e1g201〉〈g1g211|

+
cos gt sin gt

2
|g1g211〉〈e1g201|. (4.36)

The reduced density states of the pairs A1A2, A2C1, A1C1 are given by

ρ(t)A1A2
= TrC1

(ρ(t)A1A2C1
),
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=
cos2 gt

2
|e1g2〉〈e1g2| +

sin2 gt

2
|g1g2〉〈g1g2|

+
1

2
|g1e2〉〈g1e2| +

cos gt

2
|e1g2〉〈g1e2|

+
cos gt

2
|g1e2〉〈e1g2|. (4.37)

ρ(t)A2C1
= TrA1

(ρ(t)A1A2C1
),

=
cos2 gt

2
|g201〉〈g201| +

sin2 gt

2
|g211〉〈g211|

+
1

2
|e201〉〈e201| +

sin gt

2
|e201〉〈g211|

+
sin gt

2
|g211〉〈e201|. (4.38)

ρ(t)A1C1
= TrC2

(ρ(t)A1A2C1
),

=
cos2 gt

2
|e101〉〈e101| +

sin2 gt

2
|g111〉〈g111|

+
1

2
|g101〉〈g101| +

sin gt cos gt

2
|e101〉〈g111|

+
sin gt cos gt

2
|g111〉〈e101|. (4.39)

The reduced density matrix of the pair of atoms A1A2 is thus given by

ρ(t)A1A2
=















sin2 gt
2

0 0 0

0 1
2

cos gt
2

0

0 cos gt
2

cos2 gt
2

0

0 0 0 0















(4.40)

in the basis of |g1g2 >, |g1e2 >, |e1g2 >, and |e1e2 > states. Similarly,

ρ(t)A2C1
=















cos2 gt
2

0 0 0

0 sin2 gt
2

sin gt
2

0

0 sin gt
2

1
2

0

0 0 0 0















(4.41)

and

ρ(t)A1C1
=















1
2

0 0 0

0 sin2 gt
2

sin gt cos gt
2

0

0 sin gt cos gt
2

cos2 gt
2

0

0 0 0 0















(4.42)
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Figure 4.10: C (ρ(t)A1A2
) (solid line), C (ρ(t)A2C1

), (dotted line), C (ρA1C1
) (broken line)

plotted with respect to the Rabi angle gt.

Here also the CKW inequality [36] for the tripartite pure state ρ(t)A1A2C1
, C 2

A1A2
+C 2

A2C1
≤

C 2
A2(A1C1) reduces to cos2 gt + sin2 gt = 1. We now compute the mixed-state bipartite

entanglement measure (concurrence) [22, 23] for different pairs. These are given by

C (ρ(t)C1C2
) = | cos gt|, (4.43)

C (ρ(t)C2A1
) = | sin gt|, (4.44)

C (ρ(t)C1A1
) = | cos gt sin gt|, (4.45)

and are plotted in Figure 4.10 for varying Rabi angle, clearly reflecting the monogamous

nature of entanglement between A1A2 and A2C1.

4.3.2 Effects of cavity dissipation on entanglement

In the same way as discussed in section 4.3.2 the tripartite (mixed) state of A1, A2 and

C1 is obtained to be

ρ(t)A1A2C1
= |Ψ(t)A1A2C1

〉〈Ψ(t)A1A2C1
|

= α1|e1g201〉〈e1g201|
+α2|g1g211〉〈g1g211|
+α3|g1e201〉〈g1e201|
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−α4|e1g201〉〈g1e201|
+α4|g1e201〉〈e1g201|
+α5|g1g211〉〈g1e201|
+α5|g1e201〉〈g1g211|
+α6|e1g201〉〈g1g211|
−α6|g1g211〉〈e1g201|. (4.46)

where the αi are given by

α1 = cos2 gte−κt/2,

α2 = sin2 gte−κt/2,

α3 = (1 − e−κt/2),

α4 = i
(

cos gte−κt/2

2
+
κe−κt/2 sin gt

4g

)

,

α5 =
sin gte−κt/2

2
,

α6 = i(e−κt sin gt cos gt)/2,

and κ is the leakage constant for cavity C1. The reduced density states of the pairs A1A2,

A2C1, A1C1 are thus given by

ρ(t)A1A2
= TrC1

(ρ(t)A1A2C1
),

= α1|e1g2〉〈e1g2| + α2|g1g2〉〈g1g2|
+ α3|g1e2〉〈g1e2| − α4|e1g2〉〈g1e2|
+ α4|g1e2〉〈e1g2|. (4.47)

ρ(t)A2C1
= TrA1

(ρ(t)A1A2C1
),

= α1|g201〉〈g201| + α2|g211〉〈g211|
+ α3|e201〉〈e201| + α5|e201〉〈g211|
+ α5|g211〉〈e201|. (4.48)

ρ(t)A1C1
= TrC2

(ρ(t)A1A2C1
),
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= α1|e101〉〈e101| + α2|g111〉〈g111|
+ α3|g101〉〈g101| + α6|e101〉〈g111|
− α6|g111〉〈e101|. (4.49)

The reduced density matrix of the pair of atoms A1A2 is given by

ρ(t)A1A2
=













α2 0 0 0

0 α3 −α4 0

0 α4 α1 0

0 0 0 0













(4.50)

in the basis of |g1g2 >, |g1e2 >, |e1g2 >, and |e1e2 > states. Similarly,

ρ(t)A2C1
=













α1 0 0 0

0 α2 α5 0

0 α5 α3 0

0 0 0 0













(4.51)

and,

ρ(t)A1C1
=













α3 0 0 0

0 α2 α6 0

0 −α6 α1 0

0 0 0 0













. (4.52)

We again compute the concurrence for different pairs. These are functions of cavity

dissipation, and are given by

C (ρ(t)A1A2
) =

∣

∣

∣

∣

(

cos gte−κt/2 +
κe−κt/2 sin gt

2g

)∣

∣

∣

∣

, (4.53)

C (ρ(t)A2C1
) = |sin gte−κt/2|, (4.54)

C (ρ(t)A1C1
) = |e−κt cos gt sin gt|. (4.55)

The various concurrences are plotted in Figure 4.11 for varying Rabi angle, clearly reflect-

ing the monogamous nature of entanglement between A1A2 and A2C1. We see that the

“monogamous” character or “complementarity” between C (ρ(t)A1A2
) and C (ρ(t)A2C1

) is

maintained even with cavity leakage. The CKW inequality [36] for the tripartite pure

state ρ(t)A1A2C1
, C 2

A1A2
+ C 2

A2C1
≤ C 2

A2(A1C1) reduces to (cos gte−κt/2 + κe−κt/2 sin gt
2g

)2 +
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Figure 4.11: C (ρ(t)A1A2
) (solid line), C (ρ(t)A2C1

), (dotted line), C (ρA1C1
) (broken line)

plotted with respect to the Rabi angle gt. κ/g = 0.1
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Figure 4.12: C 2
A1A2

+C 2
A2C1

(solid line), C 2
A2(A1C1)

(dotted line) plotted with respect to the

Rabi angle gt.
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(sin gte−κt/2)2 ≤ 2e−κt(1 − e−κt/2) (since for small κ we take C (ρ(t)A2(A1C1)) ≈ 2
√

detρA2

which is equal to 2
√

e−κt(1 − e−κt/2)). In Figure 4.12 we plot the left and the right hand

sides (C 2
A1A2

+ C 2
A2C1

and C 2
A2(A1C1), respectively) of the corresponding CKW inequality

and here also we observe that it always holds under the above approximation.

4.4 Entanglement swapping in a system of two cavities and two

atoms

4.4.1 Ideal case of four qubits

In this section we consider some aspects of entanglement swapping, or the transfer of

entanglement from the two-cavity to the two-atom system. Such a scheme can be affected

by sending two Rydberg atoms A1, A2 prepared in their ground states g1, g2 through two

maximally entangled cavities C1, C2 (which can prepared in the same way as stated in

the earlier section) respectively. We will see how to get two maximally entangled atoms

which never interacted in the past. The time of flights for the atoms through the cavities

are the same. At t = 0, the state of the total system is

|Ψ(t = 0)〉C1C2A1A2
=

1√
2
(|0112〉 + |1102〉) ⊗ |g1g2〉 (4.56)

When the atom A1 passes through the cavity C1 the evolved state at time t is

|Ψ(t)〉C1C2A1
=

1√
2
(|0112g1〉 + cos gt|g11102〉 (4.57)

− sin gt|0102e1〉) ⊗ |g2〉 (4.58)

Now, considering the passage of both the atoms A1 and A2 through the respective cavities,

C1 and C2, the evolved state at time t is given by

|Ψ(t)〉C1C2A1A2
=

1√
2
(cos gt|0112g1g2〉 − sin gt|0102g1e2〉

+ cos gt|1102g1g2〉 − sin gt|0102e1g2〉) (4.59)

ρ(t)C1C2A1A2
= |Ψ(t)C1C2A1A2

〉〈Ψ(t)C1C2A1A2
|



Chapter 4. Curious features of entanglement: a quantitative study 74

21

A 2A1

C C

Figure 4.13: Two Rydberg atoms A1, A2 prepared in the ground states g1, g2 pass through

two maximally entangled cavities C1, C2 respectively.

cos2 gt

2
|0112g1g2〉〈0112g1g2|

+
sin2 gt

2
|0102g1e2〉〈0102g1e2|

+
cos2 gt

2
|1102g1g2〉〈1102g1g2|

+
sin2 gt

2
|0102e1g2〉〈0102e1g2|

+
cos2 gt

2
|0112g1g2〉〈1102g1g2|

+
cos2 gt

2
|1102g1g2〉〈0112g1g2|

+
sin2 gt

2
|0102g1e2〉〈0102e1g2|

+
sin2 gt

2
|0102e1g2〉〈0102g1e2|

+ . . . (4.60)

Apart from the above eight terms no other term contributes to either of the reduced

density states ρC1C2
or ρA1A2

. The reduced density states of the pairs C1C2, A1A2 are

given by

ρ(t)C1C2
= TrA1A2

(ρ(t)C1C2A1A2
),

=
cos2 gt

2
|0112〉〈0112| +

cos2 gt

2
|1102〉〈1102|

+ sin2 gt|0102〉〈0102| +
cos2 gt

2
|0112〉〈1102|

+
cos2 gt

2
|1102〉〈0112|. (4.61)
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ρ(t)A1A2
= TrC1C2

(ρC1C2A1A2
),

= cos2 gt|g1g2〉〈g1g2| +
sin2 gt

2
|g1e2〉〈g1e2|

+
sin2 gt

2
|e1g2〉〈e1g2| +

sin2 gt

2
|g1e2〉〈e1g2|

+
sin2 gt

2
|e1g2〉〈g1e2|. (4.62)

The reduced density matrix of the pair of atoms C1C2 is given by

ρ(t)C1C2
=















sin2 gt 0 0 0

0 cos2 gt
2

cos2 gt
2

0

0 cos2 gt
2

cos2 gt
2

0

0 0 0 0















(4.63)

in the basis of |0102 >, |0112 >, |1102 >, and |1112 > states. Similarly,

ρ(t)A1A2
=















0 0 0 0

0 sin2 gt
2

sin2 gt
2

0

0 sin2 gt
2

sin2 gt
2

0

0 0 0 cos2 gt















(4.64)

in the basis of |e1e2 >, |e1g2 >, |g1e2 >, and |g1g2 > states. We now compute the

concurrences for the pair of atoms A1,A2 and pair of cavities C1,C2. These are given by

C (ρ(t)C1C2
) = cos2 gt, (4.65)

C (ρ(t)A1A2
) = sin2 gt. (4.66)

The concurrences for the pairs C1-C2 and A1-A2 are plotted in the Figure 4.14. One sees

that the entanglement between two cavities are swapped by two atoms for the interaction

times gt = (2n+ 1)π/2, (n = 0, 1, 2, . . .), thus creating maximally entangled atomic pairs

at these times.

4.4.2 Information transfer with cavity dissipation

Finally, we consider the effect of cavity leakage on the transfer of information from the

two-cavity to the two-atom system. Under the secular approximation [27] and the ap-

proximation of a two-level cavity, one can solve the master equation [46] to obtain the
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Figure 4.14: C (ρ(t)C1C2
) (solid line), C (ρ(t)A1A2

), (dotted line) plotted with respect to

the Rabi angle gt.

four-party density matrix (the method of solving the master equation has been outlined

in the section 2.2.1 of chapter 2) which can be formally expressed as

ρ(t)C1C2A1A2
= α1|0112g1g2〉〈0112g1g2|
+α2|0102g1e2〉〈0102g1e2|
+α3|1102g1g2〉〈1102g1g2|
+α4|0102e1g2〉〈0102e1g2|
+α5|0112g1g2〉〈1102g1g2|
+α5|1102g1g2〉〈0112g1g2|
+α6|0102g1e2〉〈0102e1g2|
+α6|0102e1g2〉〈0102g1e2|
+ . . . (4.67)

where the αi are given by

α1 =
(

1 − e−κ1t

2

)

e−κ2t cos2 gt,

α2 = sin2 gte−κ2t
(

1 − e−κ1t

2

)

,

α3 = cos2 gte−κ1t
(

1 − e−κ2t

2

)

,
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α4 = sin2 gte−κ1t
(

1 − e−κ2t

2

)

,

α5 =
cos2 gte−κ1t/2e−κ2t/2

2
,

α6 =
(

e−κ1t/2 sin gt− κ1e
−κ1t/2

2g
+
κ1

2g

)(

e−κ2t/2 sin gt− κ2e
−κ2t/2

2g
+
κ2

2g

)

/2,

where κ1 and κ2 are the cavity leakage constants of cavities C1 and C2 respectively. Apart

from the above eight terms no other term contributes to either of the reduced density states

ρC1C2
or ρA1A2

, which are given by

ρ(t)C1C2
= TrA1A2

(ρ(t)C1C2A1A2
),

= α1|0112〉〈0112| + α3|1102〉〈1102|
+ (α2 + α4)|0102〉〈0102| + α5|0112〉〈1102|
+ α5|1102〉〈0112|. (4.68)

ρ(t)A1A2
= TrC1C2

(ρ(t)C1C2A1A2
),

= (α1 + α3)|g1g2〉〈g1g2| + α2|g1e2〉〈g1e2|
+ α4|e1g2〉〈e1g2| + α6|g1e2〉〈e1g2|
+ α6|e1g2〉〈g1e2|. (4.69)

The reduced density matrix of the pair of atoms C1C2 is given by

ρ(t)C1C2
=













(α2 + α4) 0 0 0

0 α1 α5 0

0 α5 α3 0

0 0 0 0













(4.70)

in the basis of |0102 >, |0112 >, |1102 >, and |1112 > states. Similarly,

ρ(t)A1A2
=













0 0 0 0

0 α4 α6 0

0 α6 α2 0

0 0 0 (α1 + α3)













(4.71)
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Figure 4.15: C (ρ(t)C1C2
) (solid line), C (ρ(t)A1A2

), (dotted line) plotted with respect to

the Rabi angle gt. κ1/g = κ2/g = 0.1

in the basis of |e1e2 >, |e1g2 >, |g1e2 >, and |g1g2 > states. We compute the concurrences

for the pair of atoms A1,A2 and pair of cavities C1,C2. These are

C (ρ(t)C1C2
) = | cos2 gte−κ1t/2e−κ2t/2|, (4.72)

C (ρ(t)A1A2
) =

∣

∣

∣

∣

(

e−κ1t/2 sin gt− κ1e
−κ1t/2

2g
+
κ1

2g

)(

e−κ2t/2 sin gt− κ2e
−κ2t/2

2g
+
κ2

2g

)∣

∣

∣

∣

.

(4.73)

We plot them versus the Rabi angle in Figure 4.15. Though the concurrences C (ρ(t)C1C2
)

and C (ρ(t)A1A2
) are reduced by the loss of cavity photons, one sees that perfect swapping

is still obtained. One of the basic features of information exchange between bipartite

systems, represented by entanglement swapping, is thus seen to be preserved for mixed

states too.

4.5 Summary

In this chapter we have considered two important and interesting features of quantum

entanglement, viz., “monogamy”, and entanglement swapping. We have used the set-

up of (i) two initially entangled cavites [70, 71, 72] and a single Rydberg atom passing

through one of them and, (ii) two initially entangled atoms [6] with one of these atoms

passing through a single-mode vacuum cavity, to study the quantitative manifestations
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of a “monogamy” inequality [36] in atom-photon interactions. The unavoidable photon

leakage exists in cavities used for the practical realization of quantum information transfer.

The effects of such dissipation have been investigated on the “monogamous” nature of

the entanglement between the two cavities and an atom, and in between two atoms and

the cavity. We have found that the essential “monogamous” character is preserved even

with cavity dissipation.

We have further shown that the entanglement between the atom and the cavity through

which it passes increases with larger dissipation, a feature that could be understood by

invoking the “monogamous” character of entanglement in the first system. We have then

considered a set-up involving two entangled cavities and two Rydberg atoms. Entangle-

ment swapping between the two cavities and the two atoms which never interact directly

with each other is observed in this system. Cavity dissipation reduces the total amount

of information exchange. Moreover, here we have verified that the property of swapping

is preserved with dissipation. Further studies on different quantitative manifestations of

information transfer in the presence of dissipative effects might be useful for the construc-

tion of realistic devices implementing various protocols.



Chapter 5

Effects of cavity field statistics on entanglement

5.1 Introduction

The utility of entangled atomic qubits for quantum information processing has prompted

several new methods for their generation [73]. Many of these schemes assume a vacuum

cavity field to generate atomic entanglement. However, the process of atom-atom entan-

glement usually involves the transfer of entanglement between two different Hilbert spaces,

i.e., from the photons to the atoms [9, 10, 11, 12, 74]. The properties of the radiation field

involved, thus govern the quantitative nature of atomic entanglement generated through

such transfers. In the present chapter we study the dynamical generation of entanglement

between two two-level atoms mediated by various cavity fields. Since the atoms do not

interact directly with each other, the properties of the radiation field encountered by them

bears crucially on the nature of atomic entanglement. Our main purpose is to focus on

the effect of different field statistics on the magnitude of two-atom entanglement.

The motivation for this work [12, 13] is to investigate the role of various radiation fields

inside a cavity on the atomic entanglement mediated by it. We focus on a micromaser

type system [9, 20, 33, 75] in which two-level Rydberg atoms are sent into the cavity at

such a rate that the probability of two atoms being present there is negligibly small. We

take the initial state of the two atoms as separate or product state, and the emergent

two-qubit state is of a mixed entangled type [9]. Here we consider the cavity to be of a

non-leaky type, i.e., Q = ∞. We quantify the two-atom entanglement by computing the

entanglement of formation [22, 23]. We present a detailed and comparitive study of two

atom entanglement for low and high average photon number cases corresponding to the

80
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different cavity fields.

The structure of the chapter is as follows. In Section 5.2 we give a description of

various radiation fields and show how the entanglement between two spatially separated

atoms is generated. We observe robust atom-atom entanglement mediated by the Fock

state field, the thermal field, and the coherent field respectively [12]. We demonstrate

how the various field statistics are reflected in two-atom entanglement as a function of

the average photon number of the cavity fields and the Rabi angle. Several distinctive

characteristics of the entanglement generated by the different fields through the Jaynes-

Cummings interaction are discussed in comparison with some earlier results obtained for

the Tavis-Cummings interaction [76]. A common feature that is observed is that for the

cavity low photon number case, the entanglement between the two atoms decreases with

increasing average photon number of the field. In section 5.3 we investigate an interesting

relation between squeezing of the cavity field and the atomic entanglement generated [13].

We find the conditions in which squeezing can lead to the increase in the magnitude of

entanglement.

5.2 Cavity field statistics and atomic entanglement

As discussed in chapter 2 the interaction picture Hamiltonian of the joint atom-field

system can be written in the rotating wave approximation [46] as,

HI = g(σ+a + σ−a†). (5.1)

where a† and a are the usual creation and destruction operators of the radiation field. Here

we consider the quality factor of the cavity Q = ∞, which is a reasonable approximation

since the cavity-QED related experiments are carried out with cavities with very high

Q [6]. We consider a micromaser-type system discussed in details in chapter 3 in which

atoms are sent into the cavity at such a rate that the probability of two atoms being

present there is negligibly small. Our purpose here is to show the influence of the photon

statistics of the driving fields (radiation field with which the atoms interact) on atomic

entanglement. In the following analysis, we consider four different kinds of radiation fields,

i.e., the Fock state field, the thermal field, the coherent state field, and the squeezed state

field, respectively.
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5.2.1 Fock state cavity field

A Fock state is written as |n〉 with n an integer value, signifying that there are n quanta

of excitation in the mode. |0〉 corresponds to the ground state (no excitation). The

amplitudes cns of these states obey the delta function relation cn = δm,n where m is the

photon number of the Fock state. The variance, defined in Eq.(2.6) is V = 1− 1
m

for a Fock

state |m〉. So, for small values of m, V < 1 and field has a non-classical character. For

large m, V tends towards the classical limit. This feature is reflected in the entanglement

generated between the two atoms, as we see later.

Let us first consider the passage of the first atom, initially in the excited state |e >,

through the cavity. The joint atom-field state is given by

|Ψ(t = 0)〉a−f = |e〉 ⊗ |n〉. (5.2)

The atom-field state evolves with the interaction given by Eq.(5.1) to

|Ψ(t)a−f〉 = cos (
√
n + 1gt)|e, n〉 + sin (

√
n+ 1gt)|g, n+ 1〉 (5.3)

The next atom which enters the cavity interacts with this “changed” field and thus a

correlation develops between the two atoms via the cavity field. The joint state of the

two atoms and the field is given by

|Ψ(t)〉a−a−f = α1|e1, e2, n〉 + α2|e1, g2, n+ 1〉 + α3|g1, e2, n+ 1〉 + α4|g1, g2, n+ 2〉 (5.4)

where

α1 = cos2 (
√
n+ 1gt), α2 = cos (

√
n + 1gt) sin (

√
n+ 1gt),

α3 = cos (
√
n+ 2gt) sin (

√
n+ 1gt), α4 = sin (

√
n+ 1gt) sin (

√
n + 2gt). (5.5)

The reduced mixed density state of the two atoms after tracing over the field is given by

(we display the non-vanishing terms only)

ρ(t)a−a = trf(ρ(t)a−a−f ) = α2
1|e1e2〉〈e1e2| + α2

2|e1g2〉〈e1g2|
+α2

3|g1e2〉〈g1e2| + α2α3|e1g2〉〈g1e2| + α2α3|g1e2〉〈e1g2| + α2
4|g1g2〉〈g1g2|. (5.6)
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Figure 5.1: Atom-atom entanglement versus gt. Solid line, dotted line, and dashed line

indicate EF between two atoms when the cavity Fock states are n = 0, n = 10, and

n = 100 respectively.

The corresponding reduced density matrix is obtained to be

ρa−a =













α2
1 0 0 0

0 α2
2 α2α3 0

0 α2α3 α2
3 0

0 0 0 α2
4













(5.7)

in the basis of |e1e2 >, |e1g2 >, |g1e2 > and |g1g2 > states.

We compute the entanglement of formation Ef for this bipartite two-atom state. In

Figure 5.1 EF is plotted versus the Rabi angle gt for different values of n. The peaks

of the entanglement of formation are reflective of the photon statistics that are typical

in micromaser dynamics[75]. We see that EF falls off sharply as n increases. The non-

classical character of the field for small values of the average photon number n, is reflected

in larger entanglement between the two atoms. An interesting comparison can be made

with the case of the Tavis-Cummings model[76] which is employed when two atoms are

present simultaneously inside the cavity. Although the simultaneous interaction of two

excited atoms with Fock state field never results in two-atom entanglement as was shown

by Tessier et al.[7], the notable difference here is that in the JC dynamics modelling the

micromaser one always gets two-atom entanglement mediated by the Fock state cavity

field, as we see in Figure 5.1.
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5.2.2 Thermal state cavity field

The thermal field is the most easily available radiation field, and so, its influence on the

entanglement of spins (two-level atoms) is of interest [10]. The field at thermal equilibrium

obeying Bose-Einstein statistics has an average photon number at temperature T 0K, given

by

< n >=
1

eh̄ω/kT − 1
. (5.8)

The photon statistics is governed by the distribution Pn given by

Pn =
< n >n

(1+ < n >)n+1
. (5.9)

We plot the probability distribution function Pn versus the photon number n for different

values of the average photon number. This distribution function always peaks at zero,

i.e., npeak = 0 (Figure 5.2). We also observe that the peak of the distribution function at

photon number zero reduces with increasing average photon number < n >. We consider

the scheme of two two-level atoms are passing through a cavity filled with a thermal

radiation field one after the other. We assume the time of flight of each atom through the

cavity to be the same. For a thermal field distribution function for the cavity field, the

joint two-atom-cavity state is obtained by summing over all n, and is given by

|Ψ(t)〉a−a−f =
∑

n

An[cos2 (
√
n+ 1gt)|e1, e2, n〉 + cos (

√
n+ 1gt) sin (

√
n+ 1gt)|e1, g2, n + 1〉

+ cos (
√
n + 2gt) sin (

√
n+ 1gt)|g1, e2, n + 1〉

+ sin (
√
n + 1gt) sin (

√
n+ 2gt)|g1, g2, n+ 2〉] (5.10)

where Pn = |An|2 is the photon distribution function of the thermal field. The reduced

mixed density state of two atoms after passing through the thermal cavity field can be

written as

ρ(t)a−a = trf(ρ(t)a−a−f ) = β1|e1e2〉〈e1e2| + β2|e1g2〉〈e1g2|
+β3|g1e2〉〈g1e2| + β4|e1g2〉〈g1e2|
+β4|g1e2〉〈e1g2| + β5|g1g2〉〈g1g2|, (5.11)
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Figure 5.2: Thermal field distribution function Pn is plotted vs photon number n when

(i) average photon number < n >= 0.3 (solid line), (ii)< n >= 0.5 (dotted line) and (iii)

< n >= 0.7 (dashed line).

where

β1 =
∑

n

Pn cos4 (
√
n+ 1gt),

β2 =
∑

n

Pn cos2 (
√
n+ 1gt) × sin2 (

√
n+ 1gt),

β3 =
∑

n

Pn cos2 (
√
n+ 2gt) × sin2 (

√
n+ 1gt),

β5 =
∑

n

Pn sin2 (
√
n+ 1gt) × sin2 (

√
n+ 2gt),

β4 =
∑

n

Pn sin2 (
√
n+ 1gt) × cos (

√
n + 1gt) cos (

√
n+ 2gt). (5.12)

The corresponding reduced density matrix can thus be written as

ρa−a =













β1 0 0 0

0 β2 β4 0

0 β4 β3 0

0 0 0 β5













(5.13)

in the basis of |e1e2 >, |e1g2 >, |g1e2 > and |g1g2 > states.

We compute the entanglement of formation EF for the above two-atom state and plot

it versus the Rabi angle gt for different values of the average photon number < n > in
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Figure 5.3: Atom-atom entanglement of formation mediated by the thermal cavity field

is plotted versus gt.

Figure 5.3. It is interesting to note that the thermal field which has miminimal information

can nevertheless entangle qubits that are prepared initially in a separable state. In the

context of the Tavis-Cummings framework when both the atoms interact simultaneously

with the radiation field, Kim et al. [10] have noticed similar trends in the entanglement

mediated by the thermal field. Thus both the Jaynes-Cummings and the Tavis-Cummings

models of atom-photon interaction generate similar entanglement when the radiation field

is thermal. However, a micromaser-like dynamics based on Janes-Cummings interaction

is more realistic from the point of view of cavity-QED experiments.

5.2.3 Coherent state cavity field

A coherent states is a minimum uncertainty state[77] standing at the threshold of the

classical-quantum limit. These states are parametrised by a single complex number α as

follows:

|α〉 =
∑

n

αn√
n!
|n〉. (5.14)

A coherent state is an eigenstate of the annihilation operator a

a|α〉 = α|α〉 (5.15)
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Figure 5.4: Coherent field distribution function Pn is plotted vs photon number n when

(i) average photon number < n >= 50 (solid line), (ii)< n >= 100 (dotted line) and (iii)

< n >= 150 (dashed line).

and obeys a Poissonian distribution function in the photon number representation

Pn =
e−<n> < n >n

n!
(5.16)

with the average photon number < n >= |α|2. We plot the probability distribution

function Pn of the coherent state field versus photon number n for different values of the

average photon number < n > (Figure 5.4). It is clearly seen from Figure 5.4 that the

distribution function Pn peaks at non-zero values of the photon number, i.e., npeak 6= 0.

We see that the peaks of the coherent distribution function shift to the right as the average

photon number increases in contrast to the case of the thermal field.

The Jaynes-Cummings interaction[26] leads to a tripartite joint state of the cavity

field and the two atoms passing through it given by

|Ψ(t)〉a−a−f =
∑

n

An[cos2 (
√
n+ 1gt)|e1, e2, n〉

+ cos (
√
n+ 1gt) sin (

√
n + 1gt)|e1, g2, n+ 1〉

+ cos (
√
n+ 2gt) sin (

√
n + 1gt)|g1, e2, n+ 1〉

+ sin (
√
n + 1gt) sin (

√
n+ 2gt)|g1, g2, n+ 2〉] (5.17)

where Pn = |An|2. Since we are interested in calculating the entanglement of the joint

two-atom state after the atoms emerge from the cavity, we consider the reduced density
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state ρ(t)a−a of the two atoms obtained after taking trace over the field variables

ρ(t)a−a = Trfield(|Ψ(t) >a−a−f.a−a−f< Ψ(t)|)
= γ1|e1e2〉〈e1e2| + γ2|e1g2〉〈e1g2|

+γ3|g1e2〉〈g1e2| + γ4|e1g2〉〈g1e2|
+γ4|g1e2〉〈e1g2| + γ5|g1g2〉〈g1g2|
+γ6|e1e2〉〈g1g2| + γ6|g1g2〉〈e1e2|
+γ7|e1g2〉〈e1e2| + γ7|e1e2〉〈e1g2|
+γ8|g1e2〉〈e1e2| + γ8|e1e2〉〈g1e2|
+γ9|g1g2〉〈e1g2| + γ9|e1g2〉〈g1g2|
+γ10|g1e2〉〈g1g2| + γ10|g1g2〉〈g1e2|, (5.18)

where

γ1 =
∑

n

Pn cos4 (
√
n + 1gt),

γ2 =
∑

n

Pn cos2 (
√
n + 1gt) sin2 (

√
n + 1gt),

γ3 =
∑

n

Pn cos2 (
√
n + 2gt) sin2 (

√
n + 1gt),

γ4 =
∑

n

Pn sin2 (
√
n + 1gt) cos (

√
n+ 1gt) cos (

√
n + 2gt),

γ5 =
∑

n

Pn sin2 (
√
n + 1gt) sin2 (

√
n + 2gt),

γ6 =
∑

n

√

PnPn−2 cos2 (
√
n + 1gt) sin (

√
ngt) sin (

√
n− 1gt),

γ7 =
∑

n

√

PnPn−1 cos2 (
√
n + 1gt) cos (

√
ngt) sin (

√
ngt),

γ8 =
∑

n

√

PnPn−1 cos3 (
√
n + 1gt) sin (

√
ngt),

γ9 =
∑

n

√

PnPn−1 sin2 (
√
n + 1gt) cos (

√
n+ 1gt) sin (

√
ngt),

γ10 =
∑

n

√

PnPn−1 sin2 (
√
n + 1gt) cos (

√
n+ 2gt) sin (

√
ngt). (5.19)

This state can be written in the matrix form in the basis of |e1e2 >, |e1g2 >, |g1e2 > and
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Figure 5.5: Two-atom entanglement mediated by the coherent state cavity field at low

average photon number is plotted versus gt.

|g1g2 > states as

ρa−a =













γ1 γ7 γ8 γ6

γ7 γ2 γ4 γ9

γ8 γ4 γ3 γ10

γ6 γ9 γ10 γ5













. (5.20)

The entanglement of formation EF is computed separately for low and high photon

numbers as the two cases have distinctive features for the coherent state field. Ef is

plotted versus the Rabi angle gt for low average photon number < n > in Figure 5.5.

The peaks of the entanglement of formation are reflective of the photon statistics that are

typical in micromaser dynamics[75]. We see that EF falls off sharply as < n > increases.

For small photon numbers, npeak ≈ 0 and hence, the evolution of EF is similar to the case

when a thermal field is inside the cavity. For large < n >, npeak moves significantly to the

right (Figure 5.6) and its influence is completely different compared to that for the low

< n > case. Quantum effects which are predominant primarily when the photon number

is low, help to increase the peak value of Ef . We note in Figure 5.6 that in general, EF

increases slightly with < n > with its time evolution being different for different < n >.

This is reflective of the collapse-revival characteristic in the Jaynes-Cummings model[26].

We further note that though EF is higher for the low photon number category (Figure

5.5), this behaviour is reversed for the high photon number category (Figure 5.6). For
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Figure 5.6: Atom-atom entanglement mediated by coherent state cavity field at high

average photon number is plotted versus gt.
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Figure 5.7: Atom-atom entanglement mediated by coherent state cavity field in the Tavis-

Cummings model is plotted vs gt for average photon number (i) < n >= 100 (solid line),

(ii) < n >= 200 (dotted line), and (iii) < n >= 300 (dashed line).
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high < n >, the features of generated entanglement are thus significantly different from

those in the case of the thermal field. In the context of the Tavis-Cummings framework

when both the atoms interact simultaneously with the radiation field, Tessier et al. [7]

have noticed similar trends in the entanglement mediated by the coherent field. In this

framework where two two-level atoms prepared in the excited state simultaneously interact

with the cavity field, one can get atom-atom entanglement mediated via by the coherent

state field. In Figure 5.7 we plot the atom-atom entanglement in the Tavis-Cummings

framework and see that it has similar trend in characteristics as entanglement in the

Jaynes-Cummings framework (Figure 5.6).

5.3 Effects of squeezing on entanglement

A quantum mechanical cavity field such as the squeezed field[78] may assist in increasing

the atomic entanglement. The squeezed radiation field has wide applications in many

different arenas of quantum optics[78, 79, 80, 81, 82]. The relation between squeezing and

entanglement in general, is itself an interesting issue which has been discussed through

many approaches in the literature[80]. Squeezing has been used as a resource in several

protocols of generating and distilling entanglement, and in information transfer[81]. In

particular, it has been shown how atomic qubits can be entangled with the help of a

squeezed radiation field using one or two optical cavities[82]. In this section we study the

effects of squeezing parameters of a squeezed radiation field inside a microwave cavity on

the quantitative entanglement of atomic qubits passing through it.

A squeezed state has less noise in one quadrature than a coherent state. To satisfy

the uncertainty principle the noise in the other quadrature should greater than that of a

coherent state. Our purpose here is to study the effect of squeezing of the radiation field

on the entanglement of a pair of atoms passing through it.

The single mode field inside the cavity can be written as

E(t) = a1 cosωt+ a2 sinωt (5.21)

where a1 = (a+a†)/2 and a2 = (a−a†)/2i are the two quadratures satisfying [a1, a2] = i/2.
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Figure 5.8: Probability distribution function Pn is plotted vs n for (i) sub-Poissonian field

(solid line) (ii) super-Poissonian field (dotted line) (iii) coherent state field (dashed line).

The variances ∆a1 =
√

< a2
1 > − < a1 >2 and ∆a2 =

√

< a2
2 > − < a2 >2 satisfy

∆a1∆a2 ≥
1

4
. (5.22)

The coherent state or the minimum uncertainty state given by Eqs.(5.14-5.16) satisfy the

equality sign along with

∆a1 = ∆a2 =
1

2
. (5.23)

Further, either of ∆a1 or ∆a2 can be reduced below 1
2

at the expense of the other such

that Eq.(5.22) is satisfied, and radiation fields having such properties are called squeezed

fields.

The photon distribution function of the squeezed radiation field can be represented by

[78, 83, 84, 85]

Pn =
1

n!µ
(
ν

2µ
)ne−β

2( ν
µ
−1)|Hn(

β√
2µν

)|2, (5.24)

where β is related to the coherent state amplitude α in Eq.(5.15) by β = (µ+ν)α for real

α. µ and ν can be represented by the squeezing parameter r as µ = cosh r and ν = sinh r.

The average photon number can thus be written as

< n > = |α|2 + sinh2 r. (5.25)
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Figure 5.9: Atom-atom entanglement of formation mediated by the squeezed field for

different values of α is plotted versus gt for the low photon number case.

In terms of the squeezing parameter, the variances of such fields are given by

∆a1 =
1

2
e−r,

∆a2 =
1

2
er. (5.26)

Clearly, for r = 0, the statistics reduce to that for a coherent state given by Eq.(5.16).

r > 0 gives rise to sub-Poissonian statistics, whereas r < 0 produces a super-Poissonian

field. In Figure 5.8 we plot the probability distribution function for a sub-Poissonian

field, a coherent state field, and a super-Poissonian field, respectively, keeping fixed α = 3

[78, 83, 84, 85].

As in the earlier cases, we first obtain the reduced density matrix corresponding to the

joint two-atom state after passing through a cavity with the squeezed field. The reduced

density state has a similar form to that of the coherent state field given by Eq.(5.18) and

Eq.(5.20), with γs also having the same form as given in Eq.(5.19). The difference in

this case arises from the different photon statistics Pn obtained from the squeezed field

distribution function as given in Eq.(5.24).

The effects of the photon statistics of the squeezed field on two-atom entanglement

for low average photon number are displayed in the Figures 5.9 and 5.10, for varying

α and r, respectively. We see that for low photon numbers the time evolution of EF

is similar to that for a coherent field. The effect of the squeezing parameter r enters
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Figure 5.10: EF mediated by the squeezed field is plotted versus gt for different values of

the squeezing parameter r corresponding to the low average photon number case.
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Figure 5.11: EF mediated by squeezed field for different values of α is plotted versus gt

for the high average photon number case.
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through < n > in Eq.(5.25). An increase in r increases < n > and thus EF diminishes

accordingly. The influence of < n > on the quantum mechanical field statistics was

observed also in Ref.[79] where it was shown that the strength of squeezing decreases

faster for lower photon numbers. Here it might appear from Figure 5.10 that squeezing of

the radiation field is anti-correlated with the generated atomic entanglement, but what

is actually reflected is the decrease of EF caused by the increase of the average photon

number < n >. This is seen in Figure 5.11 where a larger value of α corresponds to a

larger < n >, and causes EF to be slightly increased with increasing n or α. The situation

for the high photon number case resembles that for the coherent state field.

In Figures 5.12 and 5.13 we plot the two-atom entanglement of formation EF versus

the Rabi angle gt separately for the coherent state and the squeezed state keeping the

average cavity photon number fixed. In Figure 5.12 we see that for small < n >, the

dynamics of EF are similar for both kinds of cavity fields. But the striking feature of

Figure 5.12 is in the peaks of EF for various values of gt. Note that EF for the squeezed

field (dotted line) is higher compared to the coherent state field (dashed line). Thus

squeezing of the radiation field as represented by the non-vanishing value of the squeezing

parameter r, leads to a notable increase in the magnitude of atomic entanglement over

the case the coherent state field (r = 0; no squeezing). This trend is also visible in the

high photon number case (Figure 5.13 ), though not for all values of gt. In Figure 5.14 we

plot two-atom entanglement of formation EF versus the Rabi angle gt mediated by the

squeezed state field for different squeezing parameter r with same average cavity photon

number.

5.4 Summary

In this chapter we have investigated a micromaser-type model focussing on the conse-

quences of cavity field statistics. The entanglement between the two separate atoms builds

up via atom-photon interactions inside the cavity, even though no single atom interacts

directly with another. We have computed the two-atom entanglement as measured by

the entanglement of formation EF , for the case of four different types of radiation fields,

i.e., the Fock state field, the thermal field, the coherent state field, and the squeezed field
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Figure 5.12: Atom-atom entanglement mediated by (i) squeezed cavity field (dotted line)

when < n >= 0.3 and r = 0.5, and (ii) coherent state field (dashed line) when < n >= 0.3,

plotted vs gt.
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Figure 5.13: Atom-atom entanglement mediated by (i) squeezed cavity field (dashed line)

for < n >= 50 and r = 1, and (ii) coherent state field (solid line) for < n >= 50 plotted

vs gt.
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Figure 5.14: Atom-atom entanglement mediated by squeezed cavity field for (i) < n >=

0.5 and r = 0.5 (solid line), (ii) < n >= 0.5 and r = 0 (dashed line), and (iii) < n >= 0.5

and r = −0.5 (dotted line) plotted vs gt.

respectively. Our purpose has been to study the effects of the statistics of the bosonic ra-

diation field on the dynamics of the entanglement of two atomic qubits, i.e., two fermionic

systems. Several interesting features of atomic entanglement are observed.

We first showed that for the Fock state cavity field, entanglement between two suc-

cessively passing atoms can be generated as a consequence of Jaynes-Cummings (JC)

dynamics. This is in contrast to the case when both the atoms reside together inside the

cavity when Tavis-Cummings (TC) dynamics for atom-photon interactions is unable to

generate atomic entanglement[7]. In our case we have got two-atom entanglement which

decreases with incresing photon number. We then study the entanglement mediated by

the thermal radiation field. It is interesting to note that the thermal field which carries

minimum information is still able to produce atomic entanglement through the JC in-

teraction. However, the thermal field having a high value of the average photon number

loses its ability to entangle atomic qubits passing through it.

Next we computed the two-atom entanglement as measured by the entanglement of

formation EF for the cases of the coherent state field and the squeezed radiation field

inside the cavity. We have performed a quantitative study of the effects of squeezing

of the bosonic radiation field on the mediation of the mixed state entanglement of two

atomic qubits. Two distinct patterns of entanglement are seen to emerge for the cases
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corresponding to low and high average cavity photon numbers, respectively. In the former

case the quantum nature of the radiation field plays a prominent role in enhancing atomic

entanglement with the decrease of < n >. The situation reverses for high < n > case

where actually the increase of < n > leads to a slight increase of EF . The key feature

prominently observed for the low < n > case is that the two-atom entanglement can be

increased with squeezing of the cavity field if the average cavity photon number is held

fixed.



Chapter 6

Environment induced entanglement

6.1 Introduction

In the previous chapters, we have discussed various interesting features of entangle-

ment obtained in devices involving microwave cavities[6]. In all these schemes inter-

action with the surrounding heat bath and cavity leakage has to be monitored such

that rapid decoherence[86] is unable to destroy the created entanglement within the

time-frame required for observation. Though most proposals of entanglement genera-

tion rely on methods to reduce the coupling with the environment, there have been some

suggestions[10, 37, 38, 39, 41] for creating entanglement between two or more parties by

their collective interactions with a common environment.

Though the effectiveness of collective interactions in the dynamics of quantum optical

systems has been appreciated much earlier[47], specific examples of environment induced

entanglement have been worked out recently. Schemes of using the decay of the cavity

field to induce atom-atom or cavity-cavity entanglement have been proposed[37]. Braun

has shown that entanglement can be created between two qubits which do not interact

directly with each other, but interact with a common heat bath[41]. A corollary of this

result is the mediation of atomic entanglement by a thermal field inside a cavity[10, 12].

Other proposals involving the collective dynamics of trapped ions, squeezed and thermal

fields, and quantum-reservoir engineering have also been suggested[38, 39].

In this chapter we show that entanglement in atom-cavity devices can be quantitatively

increased by increasing the cavity damping rate. We illustrate our point by first consid-

99
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ering two examples of tripartite systems ((i) two cavities and a single atom, and (ii) one

cavity and two atoms) where we obtain analytically the expressions for the atom-cavity

and two-atom concurrences, respectively, as functions of the cavity leakage parameter

κ. It is seen explicitly that the concurrences are maximized for intermediate values of

κ/g. Plenio and Hulega[39] have earlier shown numerically that entanglement between

two optical cavities driven by an external optical white noise field can be maximised for

intermediate values of the cavity damping rates. In this chapter we derive analytically a

similar result, using simple but practically realizable systems with above two examples.

The purpose of the present chapter is to show not just the creation of entanglement

with environmental assistance, but to demonstrate the feasibility of actual enhancement

of entanglement in real workable devices. To this end, we finally consider again the

experimentally workable micromaser [31, 32]. The micromaser device is well known for

its utility in the generation of entangled atomic states [52]. The controlled monitoring

of dissipative effects makes it possible to study fundamental aspects like nonlocality and

information transfer through the micromaser [9, 20] as we have shown in chapter 3. Many

of these features have been demonstrated in several experiments performed using the

micromaser [31, 32]. Here we choose certain experimentally achieved range of values for

the micromaser parameters and show through numerical analysis that the entanglement

between a pair of atoms can be increased with the increase of cavity damping κ up to a

certain range of its values.

6.2 Enhancement of entanglement in tripartite systems

6.2.1 A two-level atom interacting with one of two maximally entangled

cavities

We first consider two initially maximally entangled single-mode cavities (C1 and C2).

Such a system can be prepared by sending a single circular Rydberg atom in its exited

state through two identical and initially empty high-Q microwave cavities[70] discussed

in details in chapter 4. A two-level Rydberg atom A1 prepared in the ground state

|g〉 passes through the cavity C1 (see Figure 6.1). In the chapter 4 we have studied

such a tripartite system to show the monogamous nature of entanglement. The resonant
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Figure 6.1: A two-level Rydberg atom prepared in the ground state is passing through

one of two maximally entangled cavities C1 (same as Figure 4.3)

interaction between the two-level atom and the cavity mode frequency takes place with

the Rabi angle gt. In presence of the cavity dissipation, the dynamics of the flight of the

atom is governed by the evolution equation (as we have seen in Eq.(3.4) in chapter 3)

ρ̇ = ρ̇|atom-field + ρ̇|field-reservoir, (6.1)

At temperature T ∼= 0 K, usually the case in cavity-QED experiments, the average

thermal photon number can be taken to be zero. Since we are working with a two-level

Rydberg atom, its lifetime is much larger compared to the atom-cavity interaction time

and hence we can neglect the atomic dissipation. The first term on the r.h.s. of Eq.(6.1)

evolves under the usual Jaynes-Cummings interaction, and the second term is given by

(as we have seen in Eq.(3.3) in chapter 3)

ρ̇|field-reservoir = −κ(a†aρ− 2aρa† + ρa†a). (6.2)

where κ is the cavity leakage constant. We consider the approximation of a two-level

cavity, i.e., the probability of getting a two-or more than two-photon number state of

the cavities is zero. Under the secular approximation[27] the time-evolved density matrix

of the tripartite two-cavity-atom system ρC1C2A1
is given in section 4.2.2. We reproduce

them here for the sake of completeness in this chapter.

ρ(t)C1C2A1
= α1|0112g1〉〈0112g1|
+α2|1102g1〉〈1102g1|
+α3|0102e1〉〈0102e1|
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+α4|1102g1〉〈0102e1|
−α4|0102e1〉〈1102g1|
+α5|0112g1〉〈1102g1|
+α5|1102g1〉〈0112g1|
+α6|0102e1〉〈0112g1|
−α6|0112g1〉〈0102e1|, (6.3)

where where |0 > and |1 > represent the 0-photon and the 1-photon number basis states

of the cavities, respectively, and αi are given by

α1 =
(

1 − e−κ1t

2

)

e−2κ2t,

α2 = cos2 gte−κ1t
(

1 − e−2κ2t

2

)

,

α3 = sin2 gte−κ1t
(

1 − e−2κ2t

2

)

,

α4 = i sin gt cos gte−κ1t
(

1 − e−2κ2t

2

)

,

α5 =
cos gte−

κ1t

2 e−κ2t

2
,

α6 = i
(

e−
κ1t

2 sin gt

2
− κ1e

−κ1t

2 cos gt

4g
+
κ1

4g

)

e−κ2t, (6.4)

where κ1 and κ2 are the leakage constants for cavity C1 and C2 respectively.

The reduced state of the first cavity and the atom (ρ(t)C1A1
) is given by

ρ(t)C1A1
= TrC2

(ρC1C2A1
),

= α1|01g1〉〈01g1| + α2|11g1〉〈11g1|
+ α3|01e1〉〈01e1| + α4|11g1〉〈01e1|
− α4|01e1〉〈11g1|, (6.5)

corresponding to the density matrix

ρ(t)C1A1
=













α1 0 0 0

0 α3 −α4 0

0 α4 α2 0

0 0 0 0













(6.6)
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in the basis of |01g1 >,|01e1 >, |11g1 >, and |11e1 >. We quantify the entanglement

using the measure concurrence (defined in Eq. (1.29) of chapter 1). We compute the

concurrence for ρ(t)C1A1
, which is given by

C (ρ(t)C1A1
) =

∣

∣

∣

∣

2 cos gt sin gte−κ1t
(

1 − e−2κ2t

2

)∣

∣

∣

∣

(6.7)

If we take κ1 = κ2 = κ, one gets

C (ρ(t)C1A1
= 2Cideal(e

−κt − e−3κt/2) (6.8)

For small κ, we can write

C (ρ(t)C1A1
≈ Cideal(1 + κt). (6.9)

where Cideal = | cos gt sin gt| (see Eq.(4.33) in chapter 4) is the value of the concurrence

in the case of ideal cavities (Q = ∞) with no dissipation. It follows from Eq.(6.8) that

for large κ one gets C (ρ(t)C1A1
→ 0, as expected. However, for small values of κ, one

sees from Eq.(6.9) that the concurrence can be increased by increasing κ. This feature of

dissipation assisted increase of entanglement is observed for a range of values of κ, and

the maximum of concurrence given by Eq.(6.8) is obtained for fixed gt from the condition

dC

d(κ/g)
= 0. (6.10)

So the entanglement for a particular interaction time (or Rabi angle) can be maximized

by choosing the value of the cavity dissipation corresponding to

or
κ

g
=

1

2gt
ln(3/2). (6.11)

It is interesting to note that the entanglement between the two cavities C1 and C2 falls off

with increasing κ, thus providing a manifestation of the monogamous nature of entangle-

ment [34] between the pairs C1A1 and C1C2. These aspects of bipartite entanglement in

a three party system have been displayed in Figures 4.5-4.7 in chapter 4. The increase of

atom-cavity entanglement with κ as seen in Eq.(6.9) follows from the collective nature of

the dynamics of the two cavities, as is apparent from the structure of the elements of the

atom-cavity state given in Eqs.(6.4) where the αi’s are the sums of two terms involving

κ1 and κ2 respectively. This motivates us to look for similar collective effects in other

simple tripartite systems such as the one involving the interaction of a single cavity with

two successive atoms, considered below.
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Figure 6.2: Two two-level atoms, the first prepared in the excited state and the second

prepared in the ground state, traverse an empty cavity one after the other (same as Figure

2.9).

6.2.2 A single cavity and two two-level atoms

We now investigate a system where two two-level atoms A1 and A2, the first prepared

in the excited state |e >, and the second prepared in the ground state |g >, are sent

into a vacuum cavity one after the other, i.e., there is no spatial overlap between the two

atoms (see Figure 6.2). We have used this system to show the atom-atom entanglement

in chapter 2. Our purpose here is to demonstrate analytically the increase of two-atom

entanglement in this model with the increase of cavity damping rate. We compute the

time-evolved density state for the tripartite system of the two atoms and the cavity under

the same secular approximation, and the approximation of a two level (zero or one photon)

cavity, given in section 4.3.2. We reproduce them here for the sake of completeness in

this chapter.

ρ(t)A1A2C1
= = γ1|e1g201〉〈e1g201|
+ γ2|g1g211〉〈g1g211|
+ γ3|g1e201〉〈g1e201|
− γ4|e1g201〉〈g1e201|
− γ4|g1e201〉〈e1g201|
+ γ5|g1e201〉〈g1g211|
− γ5|g1g211〉〈g1e201|
+ γ6|g1g211〉〈e1g201|
− γ6|e1g201〉〈g1g211|, (6.12)
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where γi are given by

γ1 = (1 − sin2 gte−κt),

γ2 = cos2 gt sin2 gte−2κt,

γ3 = sin4 gte−2κt,

γ4 =
(

sin gte−κt/2 − κ

2g
cos gte−κt/2 +

κ

2g

)

cos gt sin gte−κt,

γ5 = i sin3 gt cos gte−2κt

γ6 = i cos2 gt sin gte−3κt/2. (6.13)

The reduced density state of the pair of atoms A1A2 is given by

ρ(t)A1A2
= TrC1

(ρA1A2C1
)

= γ1|e1g2〉〈e1g2|
+ γ2|g1g2〉〈g1g2|
+ γ3|g1e2〉〈g1e2|
− γ4|e1g2〉〈g1e2|
− γ4|g1e2〉〈e1g2|, (6.14)

with the corresponding density matrix

ρ(t)A1A2
= TrC1

(ρA1A2C1
) =













γ2 0 0 0

0 γ3 −γ4 0

0 −γ4 γ1 0

0 0 0 0













(6.15)

in the basis of |g1g2 >, |g1e2 >, |e1g2 >, and |e1e2 > states.

The concurrence for the joint two-atom state ρ(t)A1A2
is given by (see, also, Eq.(2.88))

C (ρ(t)A1A2
) = |2 sin2 gte−κt

√

(1 − sin2 gte−κt)| (6.16)

For values of κ/g and gt such that (tan2 gt)(gt)(κ/g) ≪ 1, we can write

C (ρ(t)A1A2
≈ Cideal(1 +

1

2
κt tan2 gt− κt), (6.17)

where Cideal (no dissipation) in this case is given by Cideal = |2 cos gt sin2 gt| (see Eq.(2.85)

in chapter 2). Thus, enhancement of C (ρ(t)A1A2
), i.e., the increase of the atom-atom
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Figure 6.3: The two-atom concurrence CA1A2
is plotted versus the κ/g for the atom-field

interaction time (i) gt = 5π/2 (solid line) (ii) gt = 7π/2 (dotted line) (iii) gt = 9π/2

(dashed line).

mixed-state entanglement over its value in the ideal cavity case is possible if we choose

the interaction time judiciously, such that tan (gt) >
√

2. For fixed gt, the concurrence

C (ρ(t)A1A2
) can be maximized with respect to κ/g. The maximum of concurrence is

obtained at fixed gt from the condition dC
d(κ/g)

= 0, which using Eq.(6.16) leads to

κ/g = [ln((3/2) sin2 gt)]/(gt). (6.18)

From the above expression one can see that the atom-atom entanglement maximises, for

example, at κ/g = 0.051, 0.036 and 0.028 for atom-field interaction time gt = 5π/2, 7π/2,

and 9π/2, respectively, as shown in Figure 6.3. It may be recalled from sections 4.2.1

and 4.2.2 that the entanglement oscilates as a function of gt and here we show that the

reservoir of the cavity photons aids in the entanglement up to a certain value of cavity

dissipation, given a particular interaction time. Further increase of cavity damping κ,

causes the two-atom entanglement to fall off.

6.3 The one-atom micromaser

We now consider the real micromaser which has been experimentally operational [31, 32].

The mathematical model for the micromaser has been discussed in chapter 3. We have also
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Table 6.1: Steady state photon statistics for the micromaser with the parameter values nth = 0.033,

N = 1, and gt = 3π/4.

κ/g P0 P1 P2 < n >

0.1 0.771 0.220 0.007 0.236

0.01 0.664 0.316 0.014 0.359

0.005 0.655 0.324 0.015 0.370

0.0000807 0.645 0.332 0.016 0.382

described the dissipative dynamics of the micromaser there. Further we showed there how

the entanglement is generated between two spatially separated atoms via the steady-state

micromaser field. We display the steady state photon statistics P ss
n = 〈n|ρssf |n〉 (Eq.(3.15)

in chapter 3) for experimentally realizable values[31, 32] of the parameters N (N = R/2κ,

where R denotes the number of atoms passing through the cavity per second), nth and

gt in Table 1. The probability of getting two (P2) or more photons inside the cavity is

negligible. The photon statistics thus provides a justification for our earlier assumption

of a two-level cavity (P0 and P1) used for obtaining our analytical results of entanglement

enhancement in the presence of dissipation in the previous examples. However, our present

analysis for the real micromaser does not employ this assumption.

We compute the atomic entanglement generated between two experimental atoms that

pass successively through the micromaser cavity. The tripartite joint state of the cavity

and the two atoms is obtained by summing over all n. The reduced density state of the

two atoms after passing through the the cavity field is given by after tracing over the

field(we display the non-vanishing terms only)

ρ(t)A1A2
= trf(ρ(t)A1A2f)

= β1|e1e2〉〈e1e2| + β2|e1g2〉〈e1g2|
+β3|g1e2〉〈g1e2| + β4|e1g2〉〈g1e2|
+β4|g1e2〉〈e1g2| + β5|g1g2〉〈g1g2|, (6.19)

where the βi are given by

β1 =
∑

n

P ss
n cos4 (

√
n + 1gt),
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Figure 6.4: The two-atom concurrence CA1A2
is plotted versus the Rabi angle gt for various

values of the cavity leakage parameter κ. Here we choose N = 1 and n̄th = 0.033

β2 =
∑

n

P ss
n cos2 (

√
n + 1gt) sin2 (

√
n + 1gt),

β3 =
∑

n

P ss
n cos2 (

√
n + 2gt) sin2 (

√
n + 1gt),

β4 =
∑

n

P ss
n sin2 (

√
n + 1gt) cos (

√
n+ 1gt) cos (

√
n + 2gt),

β5 =
∑

n

P ss
n sin2 (

√
n + 1gt) sin2 (

√
n + 2gt). (6.20)

The corresponding reduced density matrix is obtained to be

ρ(t)A1A2
=













β5 0 0 0

0 β3 β4 0

0 β4 β2 0

0 0 0 β1













(6.21)

in the basis of |g1g2 >, |g1e2 >, |e1g2 > and |e1e2 > states.

The concurrence of the two-atom state is plotted with respect to the Rabi angle gt

in Fig. 6.4 choosing the cavity temperature as in the operational micromaser[31]. We

see that the entanglement between the two atoms increases as we increase the cavity

dissipation parameter κ/g from the experimental values (solid curves in Fig. 6.4) at a

fixed values of the Rabi angle gt. Increased damping of the micromaser cavity causes the

average cavity photon number < n > to go down, as displayed in Table 1. The collective

dynamics of the system causes the magnitude of two-atom entanglement to rise with
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decreasing < n >. This anti-correlation of the two-atom entanglement with the cavity

photon number < n > has also been observed in chapter 5 (see Figures 5.3, 5.5 and 5.9).

It is expected that further increase of κ/g beyond the values shown in the figure would

make the concurrence to fall. However, the validity of the micromaser theory that we

have used [33] is itself limited to low dissipation values.

6.4 Summary

In this chapter we have presented concrete examples of the increase of entanglement caused

by an interaction of a part of a composite system with its environment. We have first

considered the atom-cavity entanglement in a system comprised of two entangled cavities

and a two-level atom [70]. The derived expression for the atom-cavity concurrence clearly

shows the maximization of entanglement for intermediate values of the cavity damping.

A similar analytical result is also obtained for two-atom entanglement in the case of

a micromaser-type system involving a single cavity and two atoms. It is important to

note that the environment cannot help to increse the entanglement for every kind of

systems. For example, it can be verified for a system in which two two-level atoms pass

respectively through two maximally entangled cavities (see section 4.4 in chapter 4), that

cavity dissipation does not help to enhance the atomic entanglement.

We have finally again considered a model for the real micromaser [31, 32] and demon-

strated the increase of atomic entanglement with cavity damping for fixed atom-cavity in-

teraction times for experimentally operational values of the micromaser parameters. With

further development, it may be possible to utlize this effect of environment assisted entan-

glement enhancement in information processing involving multipartite systems where the

interactions times may not be easily controllable. In conclusion, we highlight that atom-

cavity systems provide much scope for the quantitative tests of several manifestations of

environment induced entanglement[10, 12, 37, 41] in experimentally realizable situations.
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Conclusions

Quantum entanglement has been widely observed within the framework of quantum opti-

cal systems such as in cavity quantum electrodynamics. Many beautiful experiments have

been carried out in recent years and several types of entangled states have been created.

The preparation and manipulation of these entangled states that have nonclassical and

nonlocal properties leads to a better understanding of basic quantum phenomena. For

example, complex entangled states, such as the Greenberger, Horne, and Zeilinger triplets

of particles [87] are used for tests of quantum nonlocality [88]. Practical realization of

various features of quantum entanglement are obtained in atom-photon interactions in

optical and microwave cavities[6]. An example that could be highlighted is the generation

of a maximally entangled state between two modes in a single cavity using a Rydberg

atom coherently interacting with each mode in turn[72].

For practical implementation of quantum information protocols useful in communica-

tion and computation[4], entanglement has to be created and preserved between qubits

that are well separated. A recent experimental breakthrough has been obtained by en-

tangling two distant atomic qubits by their interaction with the same photon[89]. From

the viewpoint of information processing, quantification of entanglement is an important

aspect, and recently some studies have been performed to quantify the entanglement that

is obtained in atom-photon interactions in cavities[7, 8, 9, 10]. In addition to pedagog-

ical aspects, entanglement has become a fundamental resource in quantum information

processing[68] and there has been rapid development of this subject in recent years[4].

In this thesis we have studied the generation of various types of entanglement via direct

110
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or indirect atom-photon interactions. We have investigated the characteristic properties

of entanglement in cavity-QED systems under dissipative dynamics. To quantify the

generated entanglement we have used the well-known measures of the concurrence or the

entanglement of formation [22, 23]. They are monotones of each other and are good

entanglement measures for bipartite mixed states in 2 ⊗ 2 Hilbert space dimension. A

basic tool in quantum optics to generate verious types of entanglement is the Jaynes-

Cummings model [26] which we have discussed in chapter 2. A two-level atom and a

single mode cavity field get entangled under the Jaynes-Cummings interaction as a rule

and we can quantify this entaglement. We have shown how atom-cavity, atom-atom, and

cavity-cavity entanglements can be generated in atom-photon interactions, in the presence

of cavity dissipation.

The generation of quantum entanglement between two spatially separated atoms can

be achieved by a practical device, the one-atom micromaser [29, 30] which we have dis-

cussed in chapter 3. The micromaser is an experimentally operational [31] real physical

device where abstract quantum information theoretic concepts can be revealed in the

presence of dissipative interactions. The micromaser cavity field is maintained in a steady

state by streaming of two-level Rydberg atoms passing one at a time through it. We

have shown [9] that it is possible to monitor the robust entanglement generated between

two successive experimental atoms passing through the micromaser by the control deco-

herence parameters. We computed the entanglement of formation (EF ) as a function of

the micromaser pump rate D for different values of the mean thermal photon number

n̄th keeping the cavity dissipation parameter κ/g fixed. We have shown that EF deceases

with increasing n̄th. Quantum information transfer can be studied in a quantitative man-

ner using the micromaser. To see how information from the micromaser cavity field is

transported to construct the entangled atomic states, we have computed the Shannon

entropies of micromaser field before and after the passage of the two experimental atoms.

This difference exhibits some correspondence with the manitude of atomic entanglement

for certain values of the Rabi angle. An important new direction that has emerged from

from our analysis is the possibility to formulate experimental proposals to test several

theoretical concepts of quantum channel capacity [21], using the micromaser.

Entanglement is endowed with certain curious features. Unlike classical correlations,
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quantum entanglement cannot be freely shared among many quantum systems. It has

been observed that a quantum system being entangled with another one limits its possible

entanglement with a third system. This behaviour of entanglement is known as “monog-

amous nature of entanglement” [36]. We have shown [35] in chapter 4 this “monogamous

nature of entanglement” quantitatively in the ideal case and also in the presence of cavity

dissipation for two tripartite systems. Another distinctive property of quantum entangle-

ment for multipartite systems is the possibility of entanglement swapping [67] between

two or more pairs of qubits. Entanglement swapping is observed between the the two-

cavity and the two-atom system in our study. Cavity dissipation leads to the quantitative

reduction of information transfer, though preserving the basic swapping property [35].

Further studies regarding different quantitative manifestations of information transfer in

the presence of dissipative effects might be useful for the construction of realistic devices

to implement various communication protocols.

The role of the cavity field in mediating atomic entanglement cannot be overempha-

sized. The nature and properties of the radiation field have a crucial bearing on the

magnitude of the generated atomic entanglement. In chapter 5 we have presented a

detailed investigation of the effects of cavity field statistics on atomic entanglement by

considering the cases of three different types of radiation fields, i.e., the Fock state field,

the thermal field, and the coherent state field respectively. We have shown [12] how the

statistics of the various fields are reflected on the atomic entanglement produced when two

atoms pass through the cavity one after another. A comparative study of the two-atom

entanglement has been presented for the low and the high mean photon number cases

corresponding to the different field statistics. Several interesting analogies, and certain

notable differences too, have been found with the results obtained in similar investiga-

tions performed by using the Tavis-Cummings model [76] of atom-photon interactions.

The relationship of squeezing with entanglement is by itself a rather interesting direction

of study [79]. In chapter 5, we further investigate the consequences of squeezing of the

cavity radiation field on the atomic entanglement mediated via it. We show [13] that in

certain cases the magnitude of entanglement can be increased by increasing the value of

squeezing parameter. Our approach has opened up prospects for futher investigations in

this direction such as on the connection of squeezing with other features of entanglement
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like its monogamous nature.

The effects of dissipation in reducing the magnitude of entanglement has been dis-

cussed throughout the thesis. However, some interesting examples have been found re-

cently [10, 37, 39, 41] where it was shown how entanglement can be generated from the

reservoir itself under certain conditions. This formed the motivation for our study in

chapter 6 where we have discussed some new examples in atom-cavity interactions [42]

in which entanglement is not only created out of the cavity reservoir, but is shown to

increase with increase of the cavity damping rate. The role of the collective dynamics

of the photon modes interacting with the atomic levels towards assisting atomic entan-

glement up to certain intermediate values of the cavity dissipation parameter has been

highlighted for the first time in these examples. Here we also demonstrate [42] how such

an example of environment induced entanglement could be experimentally verified using

the micromaser with operational values of the micromaser parameters. The study of more

such examples could be of much practical importance in quantum information processing

and computing devices.

Finally, we would like to reemphasize that the quantitative study of entanglement

produced in various types of atom-photon interactions is avery relevant arena for investi-

gations. Atom-photon interactions and the generation of entanglement mediated through

them are expected to play an important role in possible future practical realizations in

the field of quantum communications[89, 90]. Recently, the possibility of entanglement

of a thermal radiation field with high temperature phonons associated with moving mir-

rors of a cavity has been shown[91], brightening the prospects for creating macroscopic

entanglement. Even from a purely pedagogical perspective, investigations of quantita-

tive entanglement in atom-photon interactions could lead to interesting insights on the

curious properties of entanglement such as its ‘monogamous’ nature. Further interesting

directions could be to investigate the possibility of generating maximally entangled mixed

atomic qubits[92] using squeezing of the bosonic field as a resource.
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Appendix 1 : Derivation of master equation

We derive the so-called master equation governing the damping of the cavity mode field or

its interaction with its reservoir [46, 47]. We represent the reservoir by an infinite number

of modes of the radiation field of frequency ωi, with annihilation and creation operators

bi and b†i respectively. They satisfy the commutation relation

[bi, b
†
j ] = δij . (A1)

The interaction Hamiltonian of the cavity mode of frequency ωc, represented by the an-

nihilation (creation) operators a (a†), with the reservoir can be written as

Hint =
∑

i

g(ωi)(a + a†)(bi + b†i ) (A2)

where g(ωi) is the coupling constant between the cavity mode and the reservoir mode ωi.

The density operator ρC−R of the composite cavity-reservoir system obeys the equation

of motion, in the interaction picture,

ih̄ρ̇C−R = [Hint, ρC−R]. (A3)

Formally integrating Eq.(A3) with respect to time, we have

ρC−R(t) = ρC−R(t = 0) +
1

ih̄

∫ t

0
dt′[Hint(t

′), ρC−R(t′)]. (A4)

This integral equation can be solved by successive substitution in the form of an absolutely

and uniformly convergent series. Subsitution of Eq.(A4) in the right hand side of Eq.(A2)

gives

ih̄
∂

∂t
ρC−R(t) = [Hint, ρC−R(t = 0)] +

1

ih̄

∫ t

0
dt′[Hint(t), [Hint(t

′), ρC−R(t′)]]. (A5)

We can continue the same subsitution procedure and obtain an infinite series of integral

terms which can be regarded an exact solution for ρC−R(t). We however, confine ourselves

to the second order as the coupling constants gi are weak. (In fact, going beyond the

second order means taking into account the back reactions in the cavity-reservoir systems.)

This is known as the Born approximation in the literature. In this approximation, the



Appendix . Derivation of master equation 115

reduced density operators for the cavity mode and the reservoir donot change appreciably.

Hence, we can write

ρC−R(t′) = ρC(t′)ρR(0) (A6)

where ρC and ρR are the reduced density operators for the cavity and reservoir respectively.

Also at t = 0, we have

ρC−R(0) = ρC(0)ρR(0). (A7)

Since the reservoir is in thermal equilibrium, we can write

< bi >=< b†i >= 0 (A8)

< b†ibj >= n̄thδij. (A9)

We subsitute Eqs.(A6 − A9) in Eq.(A5), and in order to solve the integral on its RHS,

we change the time variable to τ = t − t′. The resulting integro-differential equation

describes the time evolution of ρC(t) which depends on its past value, that is, ρC(t− τ).

The cavity-QED at microwave frequencies that we deal in the thesis, involves the cavity

parameter which varies in ∼ 10−5 seconds. But the exponents in the integrals that are

involved vary in 10−12 seconds, which is much shorter compared to the time scale at which

ρC changes appreciably. Hence, we can safely take ρC ∼= ρC(t− τ) which is known as the

Markov approximation in the literature. This eliminates the integrals on the RHS in

Eq.(A5) giving us finally,

ih̄
∂ρC
∂t

= −κ(n̄th + 1)(a†aρ− 2aρa† + ρa†a) − κn̄th(aa
†ρ− 2a†ρa + ρaa†) (A10)

where κ = 2π|g(ωc)|2f(ωc) with f(ωc) being the mode distribution function of the densely

occupied infinite modes of the reservoir. The thermal photons n̄th is related to the reservoir

(cavity) temperature by the relation

n̄th =
1

e
h̄ωc
kβT − 1

. (A11)

For a cavity in vacuum, n̄th = 0, Eq.(A10) reduces to

ih̄
∂ρC
∂t

= −κ(a†aρ− 2aρa† + ρa†a) (A12)

which is Eq.(2.31) and elsewhere in the thesis.
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